We are exploring techniques to produce samples of gas-phase molecules near absolute zero for use as precision sensors and quantum simulators.
Trapped atomic ions are being pursued as an architecture for building a quantum information processor capable of outperforming traditional supercomputers.

Home Page

Welcome to Wes Campbell's research group in the Physics & Astronomy Department at UCLA.

Our research uses ultra-cold atoms and molecules to learn about the physical processes that permeate our world. We are specifically focused on the physics of quantum mechanical systems that involve many-body interactions, where our ability to theoretically describe and numerically simulate the microscopic features is severely limited. Our approach (shared by others, and known in the field as "quantum simulation") is to use well-controlled samples of atoms and molecules to build tiny, physical emulators of the physics we are investigating. By utilizing these atoms as microscopic computers that can do the work for us, we hope to be able to pick up where supercomputer simulations become intractable and use our quantum simulators to help us to design and understand new materials, perform demanding computations, and learn about the physical universe.

Tuesday, October 11, 2016: Andrew and Xueping have successfully demonstrated a technique that is designed to laser cool and trap atoms such as hydrogen and carbon (see publications for a link to the paper).  These species play the starring role in organic chemistry, yet are essentially beyond the reach of laser cooling and trapping due to the extremely deep UV light needed for laser cooling them.  By using a frequency comb instead of a narrow-band laser, Xueping...+ continue reading
Tuesday, December 22, 2015: Tony has made a nice beam profiler from a Raspberry Pi that was recently featured in a story on the blog HACK A DAY.  This idea was also expolred by undergraduate Maxx Tepper for his Physics 199 project.  This device allows us to measure the transverse intensity profile of our laser beams with an inexpensive, protable device.  Source code can be found in the link on the blog post. + continue reading
Monday, May 11, 2015: We have successfully trapped and cooled 174Yb ions in our oblate Paul trap which was fabricated by Translume. In the image, there is a 2D crystal of Yb ions.  + continue reading
Wednesday, December 10, 2014: UCLA will be part of a five-campus effort in quantum simulation known as the California Institute for Quantum Emulation.  Along with the groups led by David Weld (UCSB), Sid Parameswaran (UCI), Dan Stamper-Kurn (UC Berkeley), Congjun Wu (UCSD), Julio Barreiro (UCSD), and Joel Moore (UC Berkeley), we will be working to understand some of the most complex quantum phenomena in physics, known as quantum many-body systems.  This joint...+ continue reading