Physics 17 Class Notes Commutation Relations and the Existence of Simultaneous Eigenfunctions

WCC

February 27, 2024

This writeup illustrates if a wavefunction exists that is simultaneously an eigenstate of two operators \hat{A} and \hat{B} , those operators commute,

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \equiv \hat{A}\hat{B} - \hat{B}\hat{A}$$
$$= 0.$$

We will proceed by considering a wavefunction ψ (which is a function of one or more variables, such as **r** and t that I will not bother to write out explicitly here) that is an eigenfunction of operator \hat{A} with eigenvalue a. Mathematically, this means that

$$\hat{A}\psi = a\psi.$$

Now we can consider that the commutator between \hat{A} and \hat{B} is given by

$$\left[\hat{A},\hat{B}\right]=\eta$$

for some (possibly zero) η that is yet to be determined. We can compute

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \psi = \left(\hat{A}\hat{B} - \hat{B}\hat{A} \right) \psi$$

= $\hat{A}\hat{B}\psi - \hat{B}\hat{A}\psi$
= $\left(\hat{A}\hat{B} - \hat{B}a \right) \psi$
= $\left(\hat{A} - a \right) \hat{B} \psi$, (1)

which shows that

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \psi = (\hat{A} - a) \hat{B} \psi$$
$$\eta \psi = (\hat{A} - a) \hat{B} \psi$$

Now let's assume that ψ is also (*i.e.* simultaneously) an eigenfunction of \hat{B} with some eigenvalue b:

$$\hat{B}\psi = B\psi.$$

We can now further simplify from Eq. (1),

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \psi = (\hat{A} - a) \hat{B} \psi$$
$$= (\hat{A} - a) b \psi$$
$$= b \hat{A} \psi - a b \psi$$
$$= (ba - ab) \psi$$
$$= 0 \psi.$$

So since we've found that

$$\left[\hat{A},\hat{B}\right]\psi=\eta\,\psi$$

and

$$\left[\hat{A},\hat{B}\right] \psi =0\,\psi ,$$

we conclude that $[\hat{A}, \hat{B}] = \eta = 0$. If ψ is a simultaneous eigenfunction of \hat{A} and \hat{B} , $[\hat{A}, \hat{B}] = 0$.