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Setup

We will consider the scattering of an α particle (we’ll leave its charge as qα = +Zαe so that these results
can be adapted easily to other probe particles) from an infinitely-massive point-nucleus of charge q = +Ze,
as shown below.

Figure 1: Geometry and definitions for Rutherford scattering.

The incoming α particle will be assumed to be non-relativistic with initial kinetic energy Kα = 1
2mαv

2
α.

No matter the initial angle of vα compared to the plane of the metal foil containing the nuclei, the spherical
symmetry of the Coulomb potential allows us to reduce this problem to a 2D scenario as shown above. Here,
b is the impact parameter and ϕ is the scattering angle (in the lab frame). Also shown are the time-dependent
separation from the nucleus, r(t), and the angle with respect to the line of reflection symmetry, ϑ. The line
of reflection symmetry is along axis ê1.

1



Sommerfeld parameter

If we consider for a moment a head-on collision (viz. b = 0), we can use conservation of energy to determine
the minimum radius from the nucleus that is reached by the α, which your book calls dmin:

Kα =
ZαZe2

4πϵ0

1

dmin

dmin =
ZαZe2

4πϵ0

1

Kα
. (1)

This radius (which is often denoted by η instead of dmin) is known as the (non-relativistic version of the)
Sommerfeld parameter, and provides the scale of penetration for scattering. This can be simplified by using
frequently-encountered dimensionless combination of constants that often gets its own symbol,

α ≡ e2

4πϵ0

1

h̄c
, (2)

which is known as the fine-structure constant (you may already know that α ≈ 1/137). We can write the
non-relativistic Sommerfeld parameter as

dmin = ZαZ α
h̄c

Kα
.

Relationship between scattering angle and impact parameter

Our first task is to find how b is related to ϕ (given Kα, Zα, and Z). We can start by considering how much
the scattering process changes the translational momentum of the α. If the initial momentum is pα, since
the scattering is elastic and the nucleus is assumed to be sufficiently heavy as to not recoil from the collision,
the final momentum (p′

α) must have the same magnitude as the initial momentum, |p′
α| = p′α = pα.

If we denote the total momentum change as ∆pα ≡ p′
α−pα, the graphical version of that vector equation

is an isosceles triangle with legs of length pα, apex angle ϕ, and base ∆p. From this, we see that

∆p = 2pα sin
(

ϕ
2

)
. (3)

We also know that the momentum change is equal to the time integral of the net force,

∆p =

∫
dtF(t). (4)

For the force, we have the purely-radial (from the perspective of the nucleus) Coulomb repulsion between
the stationary nucleus and the α,

F(t) =
ZαZe2

4πϵ0

1

(r(t))
2 r̂(t). (5)

Looking at figure 1, for every position r for which ϑ = −ϑ0 < 0, there is a symmetric position with
ϑ = +ϑ0 > 0 for which the components of the Coulomb force that are perpendicular to ê1 are equal and
opposite. Since symmetry dictates that the speed of the α will be identical at these two locations, we find
that the components of the force that are perpendicular to ê1 don’t contribute to the integral (4). The
direction of ∆p is clearly ê1, and we can just work with its magnitude to write

∆p =

∫
dt F (t) cos(ϑ(t)).

Next, since the force on the α is always purely radial from the nucleus, there is no torque about the
nucleus, and we therefore demand that angular momentum about the nucleus be conserved at all times
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during the collision. Taking the direction of the α’s angular momentum about the nucleus to be into the
page, we can write its initial angular momentum as

Lα = b pα. (6)

At other locations along the trajectory, we can relate it to ϑ(t) via

L(t) = |r(t)× p(t)|
= m |r(t)× v(t)|

Using our (r, ϑ) system in figure 1 as a plane-polar coordinate system, we would write the velocity in these
coordinates in the form

v = ṙ r̂+ rϑ̇ ϑ̂. (7)

Since r is always perpendicular to ϑ̂, we see that

|r(t)× v(t)| = r rϑ̇

and therefore

Lα = m (r(t))
2 dϑ

dt
dt

(r(t))
2 =

m

Lα
dϑ.

Looking back at Eq. (5), we see that we can use this to reqrite the integral over t as an integral over ϑ:

∆p =
ZαZe2

4πϵ0

∫
dt

(r(t))
2 cos(ϑ(t))

=
ZαZe2

4πϵ0

m

Lα

∫
dϑ cos(ϑ)

For the limits of this integral, we note that the entire collision spans a range of ∆ϑ = π −ϕ and is symmetric
about ϑ = 0, so the integral goes from ϑmin = ϕ

2 − π

2 to ϑmax = π

2 − ϕ
2 ,

∆p =
ZαZe2

4πϵ0

m

Lα

[
sin(π2 − ϕ

2 )− sin(π2 − π

2 )
]

=
ZαZe2

4πϵ0

m

Lα

[
cos(ϕ2 ) + cos(ϕ2 )

]
=

ZαZe2

4πϵ0

2m

bpα
cos(ϕ2 ).

Going back to Eq. (3) allows us to write this expression as

2pα sin(ϕ2 ) =
ZαZe2

4πϵ0

2m

bpα
cos(ϕ2 )

and solve for b(ϕ),

b =
ZαZe2

4πϵ0

2m

2 p2α

cos(ϕ2 )

sin(ϕ2 )

=
ZαZe2

4πϵ0

1

2Kα

1

tan(ϕ2 )
.

The non-relativistic Sommerfeld parameter allows us to write the relationship between the impact parameter
and the scattering angle as

b =
dmin

2

1

tan(ϕ2 )
.
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