
Spherical Vector Cheat Sheet

WCC
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This one always creeps me out at first → ê0× ê±1 = ∓i ê±1 ê∓1× ê±1 = ∓i ê0
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Note the following subtlety of the unit vector notation in light of the above definition: êq is a vector, not a
component of a vector. For each of the three values of q, êq has three components; in the spherical basis,
they’re somewhat non-obvious. For example, ê1 = (0, 0,−1) has only one nonzero component in the spherical
basis . . . and it’s the q = −1 component (and it’s −1)!
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Pure σ+ polarization: ϵ̂σ+ = − 1 ê∗−1 = (0, 0,−1) = ê1 ϵ̂∗σ+ = ê∗1 = (1, 0, 0) = −ê−1

Pure σ− polarization: ϵ̂σ− = − 1 ê∗1 = (−1, 0, 0) = ê−1 ϵ̂∗σ− = ê∗−1 = (0, 0, 1) = −ê1

Circularity of polarization: C ≡ −i (ϵ̂∗×ϵ̂) • k̂

This ranges from C = −1 for RCP to C = 0 for any linear polarization to C = +1 for LCP (where I am
using the Jackson convention for naming right and left circular polarizations). If the beam propagates along
k̂ ∥ +ẑ, RCP is σ− and LCP is σ+.


