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We describe the encoding of multiple qubits per atom in trapped atom quantum processors and
methods for performing both intra- and inter-atomic gates on participant qubits without disturbing
the spectator qubits stored in the same atoms. We also introduce techniques for selective state
preparation and measurement of individual qubits that leave the information encoded in the other
qubits intact, a capability required for qubit quantum error correction. The additional internal
states needed for polyqubit processing are already present in atomic processors, suggesting that the
resource cost associated with this multiplicative increase in qubit number could be a good bargain
in the short to medium term.

Quantum technologies use quantum objects, such
as atoms, photons, phonons, and electrons to house,
transport, and process quantum information. While
some applications, like certified randomness [1], ex-
plicitly utilize the nonlocality of quantum entangle-
ment as a resource, most quantum computing algo-
rithms do not. For these applications, it is therefore
not necessary that each qubit be encoded in a physi-
cally distinct object. Given that the atoms currently
used to host qubits have many accessible internal
states, it is natural to ask: can the computational
power of atomic processors be increased, at an ac-
ceptable resource cost, by defining multiple qubits
within each atom?

As an example, a problem requiring a Hilbert
space of dimension 2n could in principle be pro-
cessed by a single atom, a unary encoding, with
a large-enough number of internal states. Though
this has the advantage of requiring only one atom,
both the information storage and system control re-
sources grow exponentially with problem size, and it
has been shown that scalable quantum computing is
not possible with a unary processor [2, 3].

At the other extreme is the current pagadigm, in
which each atom hosts a single qubit, a monoqubit
encoding. Here, the computational Hilbert space can
be factored as a tensor product of n, 2-dimensional

qubit subspaces as H(qubit)
comp =

⊗n
i=1H

(i)
2 . Since

the control resources, which essentially dictate this
decomposition [4], do not grow exponentially with
problem size, such an encoding can potentially be
used for scalable quantum processing. However, at
present, a number of technical considerations, in-
cluding practical bounds on the number of shared
Bosonic modes, laser paths, trap zones, occupied
tweezer sites, frequency modulators, and/or other

FIG. 1. (a-c) A p = 2 polyqubit encoded in four atomic

eigenstates. (a) Each atomic Pauli operator ŝ
(i)
mn acts

on only two atomic eigenstates. (b) “Vertical” (σ̂
(i)
V )

and (c) “Horizontal” (σ̂
(i)
H ) qubit operators connect qubit

states. (d) A p = 3 polyqubit can be encoded in eight
atomic eigenstates to add a “Depth” (D) qubit, H23 =

H(D)
2 ⊗H(H)

2 ⊗H(V)
2 . Each qubit operator is built from

2p−1 atomic Pauli operators.

controls [5–7], limit the number of atoms that can
be reliably employed in realized processors to tens
to hundreds. Therefore, in the present qubit-host-
limited (QHL) era it may be beneficial to encode a
small number (p > 1) of qubits per atom, provided
the control resources can be managed.

Here, we show how atomic processors may be built
from a polyqubit encoding with a Hilbert space com-

posed as H(polyqubit)
comp =

⊗n/p
i=1H

(i)
2p . The main dis-

tinction between this polyqubit processing and non-
binary (qudit) quantum processing is that polyqubit
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processing requires the ability to perform state
preparation and measurement (SPAM) and gates
on participant qubits without disturbing spectator
qubits stored in the same atom. This operational ac-
cess allows the atomic subspace, H2p , to be factored

into a tensor product of qubit subspaces as H(i)
2p =⊗p

j=1H
(i,j)
2 [4], whereas an equally-dimensioned qu-

dit does not in general admit this factorization. This
enables a polyqubit machine to use standard, binary
quantum algorithms without modification, including
qubit quantum error correction (QEC).

A p-polyqubit encoded in an atomic subspace, i.e.
p qubits stored in one atom, can be visualized as a
p-dimensional hypercube graph with atomic eigen-
states on the vertices and atomic Pauli operations
on each edge (see Fig. 1). From the number of edges,
it is clear that a polyqubit encoding requires p 2p−1

sets of atomic Pauli operators that act on only two
atomic eigenstates. Though this control parameter
cost is exponential in p, with fixed p the proces-
sor itself scales with problem size by increasing the
number of polyqubits as n/p. Thus, by keeping p
small enough to manage control costs, polyqubit en-
coding provides a multiplicative boost to QHL pro-
cessors. In what follows, we describe how p qubits
can be encoded into 2p states of each single atom
in a trapped ion quantum processor and used with
currently available technology.

As an example of p = 2 polyqubit processing, we
consider a linear chain of atomic ions whose mo-
tion in a particular normal mode serves as a bus
[5]. The atomic ions are assumed to have four, long-
lived internal states appropriate for quantum infor-
mation storage, labeled with underscores for clarity
{|0〉, |1〉, |2〉, |3〉} (see Fig. 1). These could be hyper-
fine or Zeeman levels of a ground or metastable elec-
tronic state or some combination thereof [8]. We as-
sume that the transitions between all pairs of states
occur with unique frequencies, and that at least four
of them can be driven to achieve quadrilateral con-
nectivity, as shown in Fig. 1a. On this support, we
define two qubits that we dub “Horizontal” (H) and
“Vertical” (V), with the mapping:

|0〉 ≡ |0〉H ⊗ |0〉V
|1〉 ≡ |0〉H ⊗ |1〉V
|2〉 ≡ |1〉H ⊗ |0〉V
|3〉 ≡ |1〉H ⊗ |1〉V (1)

so that each polyqubit state |x′〉H⊗|x〉V is the atomic
state index expressed in two-digit (x′ x) binary. As
this user-defined designation of states is arbitrary,
results for H and V qubits are always interchange-
able and we require no particular physical difference

FIG. 2. State detection of a qubit in a polyqubit-encoded
ion (green) by laser shaking and subsequent motion read-
out using a co-trapped ancilla ion (red). An individually-
addressed laser beam with a beatnotes at a normal mode
frequency (purple) used for state detection of a (b) ver-
tical or (c) horizontal qubit. This interaction can also be
leveraged to perform inter-atomic zz gates.

between the types.

SPAM of polyqubits proceeds as follows. If all of
the qubits in a polyencoded atom are to be initialized
or read out, techniques from binary processing can
be adopted with only slight modification. For exam-
ple, optical pumping with polarization- or frequency-
controlled light can produce a single atomic state
with high-purity [9], which can be subsequently ma-
nipulated by microwave or optical radiation to pre-
pare any desired polyqubit state. State detection of
all the qubits in an atom can be accomplished by
transferring the polyqubit to a metastable manifold
and serially transferring each atomic state into the
ground state, where laser-induced fluorescence (LIF)
is used for detection [10]. Finding the atom in a sin-
gle state, which is heralded by LIF, fully determines
the value of all of the polyencoded qubits. This type
of state detection is well known [11].

For SPAM of an individual qubit within a polyen-
coded atom, the participant qubit must be measured
without disturbing the spectator qubits. In general,
this can be accomplished by a measurement that
leaves the measured qubit in an eigenstate of the
measurement (a quantum nondemolition measure-
ment) and will typically require an ancilla ion.

As an example, state detection of a single qubit
in a p = 2 polyencoded ion using a co-trapped an-
cilla ion could proceed as follows. First, a desired
mode of motion of the trapped ion crystal is cooled
near its ground state using, for example, the an-
cilla ion. Next, a laser is used to add energy to this
mode if and only if the participant qubit is in the
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particular state, as shown in Fig. 2. As a qubit in
a polyencoded atom corresponds to the population
being localized in a manifold of atomic states (e.g.,
|1〉H indicates an ion whose state is in the manifold
{|2〉, |3〉} in Fig. 1), the laser interaction must be
capable of adding motional energy without distin-
guishing between states within the manifold. This
can be achieved by e.g. applying a motion-sensitive
laser field that is modulated at the motional-mode
frequency close to a narrow optical transition to pro-
duce an AC Stark shift of only the states in the
participant qubit manifold [12]. By matching the
strength and phase of this time-dependent Stark
shift for each state in the manifold, energy is added
without disturbing information encoded in the man-
ifold. The ancilla ion can then be interrogated via
standard techniques to determine if the motional en-
ergy of the ions has increased, thereby performing
a projective measurement on only the participant
qubit. Finally, state preparation of a participant
qubit in a polyencoded atom can be accomplished
by performing state detection followed by any nec-
essary single-qubit rotation.

Alternatively, as described below, the complete
gate set of the system presented here makes it pos-
sible to perform a two-qubit swap gate between the
participant qubit and an initialized qubit in the an-
cilla ion. Thus, the qubit can be written into the an-
cilla internal state for detection or the ancilla state
written into the qubit for preparation.

The construction of single qubit gates for
polyqubits can be intuited by expressing the qubit

Pauli operators, σ̂
(i)
H and σ̂

(i)
V with i ∈ {X,Y, Z}, in

terms of atomic Pauli operators – i.e. Pauli opera-
tors that act only on pairs of atomic states, denoted

by ŝ
(i)
mn with dimension 2p × 2p. The atomic Pauli

operators are constructed from the unitary 2 × 2
Pauli matrices σ̂(i) (with |↑〉 and |↓〉 as the positive-
and negative-eigenvalue eigenvectors of σ̂(Z), respec-
tively) using the operator T̂mn ≡ |↑〉〈m| + |↓〉〈n| as

ŝ
(i)
mn ≡ T̂ †mn σ

(i)T̂mn. For the p = 2 case shown in
Fig. 1, we have

σ̂
(i)
H = ŝ

(i)
02 + ŝ

(i)
13

σ̂
(i)
V = ŝ

(i)
01 + ŝ

(i)
23 . (2)

The ŝ
(i)
mn are realized, just as they are for mono-

qubit encoding, by application of electromagnetic
radiation near resonance, either in a direct or stim-
ulated Raman fashion, with the |m〉 ↔ |n〉 transi-

tion [5]. Because
[
ŝ

(i)
mn , ŝ

(i)
kl

]
= 0 if {m, n}∩{k, l} = ∅,

it is not strictly necessary to drive both transitions
simultaneously for single qubit gates. It is, however,

necessary that the pulse areas of both transitions are
matched and, in most cases, the relative phase con-
trolled. Therefore, it is likely most efficient to realize
single-qubit gates via simultaneous, multi-tone mod-
ulation of a single optical source, and we will assume
simultaneous implementation is used. Since many of
the gate errors encountered in trapped ion processors
(including optical phase, frequency, and amplitude
errors) can be made common-mode to both in this
case, such errors will appear on the particpant qubit
without distrubing the spectator qubit, an assump-
tion underlying most qubit QEC schemes.

There are two distinct types of two-qubit gates for
polyqubits: intra-atomic and inter-atomic. Intra-
atomic two-qubit gates only require single-atom op-
erations [11]. As an example, an intra-atomic cnot
gate between the H and V qubits of a p = 2
polyqubit can be driven by simply applying a res-
onant π pulse on the |2〉 ↔ |3〉 transition along with
a π

2 phase shift (ŜH) on the H qubit, as

ei
π
4 exp

(
−iπ

4
σ̂

(Z)
H

)
exp

(
−iπ

2
ŝ

(X)
23

)
=

(
1 0
0 σ(X)

)
= cnot. (3)

Similar ideas can be applied to produce inter-atomic
multi-qubit gates involving p > 2 qubits, including
Deutsch and Toffoli gates [13], requiring only single-
atom internal state transitions [14]. Since these
gates require only single atom operations, high fideli-
ties and high speeds can be expected with current
technology.

Inter-atomic two-qubit gates can be constructed
from the standard tools of trapped ion process-

ing as long as they utilize the qubit Paulis (σ̂
(i)
H

and σ̂
(i)
V ) implemented simultaneously, as described

above [14]. For example, an xx gate between two
monoencoded ions is typically implemented via the
Mølmer-Sørensen (MS) interaction [15], wherein a
bichromatic drive couples the qubits using a nor-
mal mode of motion as a Bosonic quantum bus. For
polyqubit encodings, this gate is implemented by ap-
plying 2p−1 copies of the MS interaction that couple
each atomic state comprising the participant qubit
|0〉 to a unique atomic state comprising the partici-
pant qubit state |1〉. Because these MS interactions
must couple to the same Bosonic mode, they do not
commute and must be applied simultaneously, with
matched strength and phase, to ensure that the spec-
tator qubits are undisturbed.

As an example, an inter-atomic xx gate between
participant qubits, dk ∈ {H,V }, hosted in two ions
(indexed by k) with a p = 2 polyqubit encoding is re-
alized by simultaneously applying a matched MS in-
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FIG. 3. (a) Numerical calculation of the evolution during
an inter-atomic Mølmer-Sørensen interaction between
two polyencoded ions. The dots are the population in
the |0〉d1 ⊗ |0〉d2 (black) and |1〉d1 ⊗ |1〉d2 (red) partici-
pant qubit states. Each point is calculated with a ran-
domly selected initial state for the spectator qubit. Solid
lines show evolution of monoencoded ions under the same
conditions. (b) Fidelity of the Bell state prepared at
Ωt/π = 0.5 as the Rabi frequencies of the two, motion-
coupling atomic transitions are mismatched. One exam-
ple encoding corresponding to d1 = d2 = V qubits is
shown in the inset; HV and HH gates produce identical
results. The dashed line shows F = 0.9999 for reference.

teraction with effective resonant sideband Rabi fre-
quencies Ωmn to multiple pairs of atomic states in
each ion [14]. The calculated time evolution of the
qubit state populations during this interaction are
shown in Fig. 3a, as points, for the spectator qubits
in arbitrary initial states and the participant qubits
initialized in |0〉d1 ⊗ |0〉d2 . The solid lines show the
evolution of the traditional MS interaction on mo-
noencoded ions under the same conditions.

As can be seen from the agreement between the
dashed lines and the points, the polyqubit entan-
gling gate on the participant qubits does not inter-
fere with information stored in the spectator qubits
as long as the pairwise interactions within each atom
are identical [14]. Fig. 3b shows the effect in a mis-
match in Rabi frequency for the xx gate on partici-
pant qubits in two polyencoded atoms. In this figure,
the points, connected by lines to guide the eye, give
the average fidelity for creating a Bell state with the
interaction from the initial state |0〉d1 ⊗ |0〉d2 , aver-
aged over 100 random initial states of the spectator
qubits, while the error bars show the standard devi-
ation. By matching the Rabi frequencies to roughly
0.5%, fidelities greater than F = 0.9999 are possible.

In similar fashion, zz gates [16, 17] can be con-
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FIG. 4. (a) Calculated normal mode phase-space tra-
jectories for two polyqubits during an inter-atomic zz
gate. (b) Mismatched beatnote phases on the interac-
tions applied within each individual atom can degrade
the fidelity, but only for large mismatches.

structed for polyqubits by implementing the tradi-
tional monoqubit scheme with polyencoded qubit
operators [14]. This can be accomplished, for exam-
ple, by applying a highly-state-selective AC Stark
shift that is modulated near, but intentionally de-
tuned from a normal mode frequency [12], similar
to Fig. 2b and c. Figure 4a shows the phase-space
trajectory of two polyqubits during a zz gate on
target qubits for an arbitrary initial state of the
spectator qubits. The evolution within the partic-
ipant qubit subspaces is identical to that expected
for monoencoded qubits. The points in Fig. 4b show
the fidelity for creating a Bell state from the initial
state |X〉d1 ⊗ |X〉d2 of the participant qubits, aver-
aged over 100 random initial states of the specta-
tor qubits, as a function of mismatch in beatnote
phase between the two atomic interactions within
each atom, while the error bars show the standard
deviation. The fidelity is relatively insensitive to
beatnote phase mismatch within each atom.

While we have focused on trapped ion processors
as a concrete and accessible example for polyqubit
processing, the same idea is generally applicable to
other systems. For example, neutral atom proces-
sors with Rydberg gates can potentially benefit from
polyencoding. In this case, the SPAM would be
furnished by a Rydberg gate with an ancilla atom
that uses simultaneous driving of multiple transi-
tions within the polyencoded atom to ensure that
only the participant qubit is sensitive to the gate.
As long as individual qubits within a polyencoded
atom can be independently manipulated, polyqubit
processing can be built from modified versions of the
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schemes used for monoqubit processing.
The polyqubit encoding presented here is in prin-

ciple extendable to large values of p if the host
system has enough stable states. System such as
molecules may be ideal in this respect, as they can
have many stable, nonmagnetic states that can be
controlled using electric dipole transitions in the
microwave spectrum. Further, the vibrational de-
grees of freedom of molecules may provide conve-
nient Hilbert subspaces for realizing polyencodings
as they can be approximately factorable as separate
degrees of freedom. For atomic systems, it appears
feasible to encode with p ≤ 3 by using species with
nuclear spin. Even for these low values of p, however,
polyqubit operation could provide ancillary bene-
fits beyond increasing qubit number. These include
the replacement of some inter-atomic gates by intra-
atomic gates (which are likely to have significantly
higher fidelity), reduced shuttling needs, and poten-
tially increased connectivity in range-limited proces-
sors.

While polyqubit processing has no more com-
putational power than processing using equally-
dimensioned qudits, it may have some practical ad-
vantage as it requires controls that are essentially
already present in trapped ion quantum proces-
sors. Further, factoring a qudit Hilbert space into
polyqubits provides a qudit-dimension independent
means to process with current algorithms designed
for qubits, including QEC. As such, the resource
cost associated with converting a binary machine to
polyqubit mode to gain this multiplicative increase
in the qubit number may prove to be a good bargain
in the QHL era.
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SUPPLEMENTAL MATERIALS

INTER-ATOMIC TWO-QUBIT GATES

Inter-atomic two-qubit gates can be achieved by essentially employing two copies of the interaction needed
to effect two-qubit gates in monoqubit encodings. In this way, two-qubit gates between two H or two V qubits
in different atoms, as well as between an H qubit in one atom with a V qubit in another, can be realized. As
the two commonly-employed two-qubit interactions for trapped ion quantum process are σ̂(X,1)σ̂(X,2) and
σ̂(Z,1)σ̂(Z,2), we discuss each in turn.

Inter-atomic xx gates

Similar to the single qubit gates, the two-qubit xx gate between distinct polyqubit-encoded atoms is
realized by implementing two xx gates on the supporting atomic states. Crucially, unlike the single qubit
case, these two interactions driven on each atom must be performed simultaneously, using the same mode of
motion, to ensure this is not accompanied by a collateral two-qubit operation between the participant and
spectator qubits in the single atoms.

As an example, a σ̂
(X)
V σ̂

(X)
V operation can be realized using Mølmer-Sørensen interactions [15] where

motion-sensitive transitions between atomic eigenstates are driven near resonant with the first red and blue

motional sidebands. Thus, to realize the σ̂
(X)
V σ̂

(X)
V interaction two such transitions are driven between

{|0〉, |1〉} and {|2〉, |3〉}. In the interaction picture with respect to the atomic and the harmonic oscillator
Hamiltonians and making the Lamb-Dicke approximation and the rotating wave approximation (RWA), the
effective Hamiltonian [18] describing the evolution due to the laser fields is:

H
(XX)
VV =

2∑
α=1

ηα

(
Ω01α

2
ŝ

(+,α)
01 (âeıδt + â†e−ıδt)eı∆φ01 +

Ω23α

2
ŝ

(+,α)
23 (âeıδt + â†e−ıδt)eı∆φ23 + H.c.

)
, (S.1)

where δ is the detuning from the motional sidebands including the laser-induced Stark shifts and if the gate is
being driven by stimulated Raman transisions, the Ωmn contain the resonant, single-photon Rabi frequencies
of the individual beams and their detunings from atomic resonance. In order to isolate the participant
qubit, we will from this point assume that the two interactions with the lasers have the same strength,
ηαΩ01α

= ηαΩ23α
≡ gα, and phase, ∆φ01 = ∆φ23 = 0, which allows us to write this in terms of qubit Paulis

using Eq. (2),

H
(XX)
VV =

2∑
α=1

gα
2
σ̂

(X,α)
V (âeıδt + â†e−ıδt). (S.2)

In the limit where the phonon excitations can be adiabatically eliminated, this Hamiltonian leads to
evolution described by the effective Hamiltonian [18]:

H
(XX)
VV,eff ≈

g1g2

2δ

(
ŝ

(X,1)
01 ŝ

(X,2)
01 + ŝ

(X,1)
01 ŝ

(X,2)
23 + ŝ

(X,1)
23 ŝ

(X,2)
01 + ŝ

(X,1)
23 ŝ

(X,2)
23

)
=
g1g2

2δ
σ

(X,1)
V σ

(X,2)
V (S.3)

The form of this result can be readily understood. The first and fourth terms in Eqn. S.3 arise in the
usual way for a Mølmer-Sørensen gate, while the middle terms arise from the excitation of one ion by one
stimulated Raman path and the excitation of the other ion by the other stimulated Raman path. These four
processes together ensure no entanglement between the H and V qubits and yield the desired interaction.

In much the same fashion as MS gates for monoencoded atoms, this effective Hamiltonian (S.3) serves
to highlight a limiting case that can be used to develop intuition, but a realistic gate is likely to operate
in a regime where the adiabatic elimination of phonons is not valid. In this case, the gate time must be
chosen to decouple the qubit from the motional evolution, potentially in multiple modes simultaneously.
Once the interactions within each polyencoded atom are matched to one another, Equation (S.2) is identical
to the form used for monoencoded atoms, which gives polyqubit processors access to the tools that have
been developed for monoqubit systems to manage multiple modes and operate gates in a robust fashion.
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Figure 3 shows a numerical solution of the time-dependent Schrödinger equation under Eq. (S.1). Dashed
lines are for two ions starting in either |00〉 or |22〉, showing that the evolution is the same as an MS gate for
monoencoded qubits. The dots are the same evolution but with an initial state of |αβ〉H ⊗ |00〉V, where for
each point a different initial state is chosen for the H qubits in ions 1 or 2. This illustrates that there is no
residual entanglement involving the spectator qubits as the interaction acts only on the participant qubits.

Similarly, two-qubit gates on H qubits proceed by driving near resonant with the first red and blue motional
sidebands of the {|0〉, |2〉} and {|1〉, |3〉} transitions. The resulting effective Hamiltonian is

H
(XX)
HH,eff ≈

g1g2

2δ
σ

(X,1)
H σ

(X,2)
H . (S.4)

Finally, assuming single ion addressing is available, inter-atomic two-qubit gates between dissimilar qubits
(such as HV) are possible via illuminating each ion with the appropriate radiation.

Inter-atomic zz gates

For monoqubit encoded ions, the differential Stark shift of the two atomic states comprising a qubit
provides an optical force on a trapped ion that depends on the qubit state. When used with a bichromatic
laser field that has a beat frequency (ωb) near a motional mode freqeuncy of the trapped ions (ω), the
trapped ions can experience an effective σ̂(Z,1)σ̂(Z,2) interaction [17]. Similarly, σ̂(Z,1)σ̂(Z,2) polyqubit gates
can be realized by applying two bichromatic laser fields that produce a differential optical force within the

appropriate pairs of states. As an example, σ̂
(Z,1)
V σ̂

(Z,2)
V interaction is realized by applying a bichromatic

field that produces a differential optical force between states {|0〉, |1〉} and another bichromatic field that
produces a differential optical force between states {|2〉, |3〉}, detuned from the motional mode freqeuncy by
δ ≡ ωB − ω. In the interaction picture with respect to the harmonic oscillator and the atomic Hamiltonians
and after the RWA and Lamb-Dicke approximations, the evolution is described by the effective Hamiltonian:

H
(ZZ)
VV =

2∑
α=1

ηα

(
∆Ω01α

2
ŝ

(Z,α)
01

(
âeı(δt+φ01) + â†e−ı(δt+φ01)

)
+

∆Ω23α

2
ŝ

(Z,α)
23

(
âeı(δt+φ23) + â†e−ı(δt+φ23)

))
.

(S.5)

where ∆Ωmnα
is the differential AC Stark shift amplitude between atomic states |m〉α and |n〉α and φmn is

the phase of the beatnote on the differential AC Stark shift of states |m〉α and |n〉α. As with the xx gate,
the two strengths within each ion should be matched, and we will assume that ηα∆Ω01α

= ηα∆Ω23α
≡ gα

and that the phase of the low-frequency beatnotes are also equal, φ01 = φ23 = 0. In order to represent the
full Hamiltonian by equation (S.5), we also require that the common-mode (as opposed to differential) AC
Stark shifts of the {|0〉, |1〉} states is the same as the {|2〉, |3〉} states, though a known mismatch could be

correct by a σ̂
(Z)
H rotation. This allows us to apply Eq. (2) to identify this as

H
(ZZ)
VV =

2∑
α=1

gα
2
σ̂

(Z,α)
V

(
âeıδt + â†e−ıδt

)
(S.6)

Once again taking the limit in which the detuning δ is large compared to the interaction strength so that
phononic excitations can be adiabatically eliminated, This Hamiltonian leads to evolution described by the
effective Hamiltonian:

H
(ZZ)
VV,eff ≈

g1g2

2δ

(
ŝ

(Z,1)
01 ŝ

(Z,2)
01 + ŝ

(Z,1)
01 ŝ

(Z,2)
23 + ŝ

(Z,1)
23 ŝ

(Z,2)
01 + ŝ

(Z,1)
23 ŝ

(Z,2)
23

)
=
g1g2

2δ
σ

(z,1)
V σ

(z,2)
V (S.7)

As with the σ(X)σ(X) interaction, the form of this result can be readily understood. The first and fourth
terms in Eq. (S.7) arise in the same manner as a monoencoded σ(Z)σ(Z) gate, while the middle terms arise
from the cross terms. These four processes together ensure no entanglement between the H and V qubits
and yield the desired interaction.

8



INTRA-ATOMIC DEUTSCH AND TOFFOLI GATES FOR p = 3

When p ≥ 1, interactions that involve only a single atomic Pauli operator can be nontrivial in the qubit
basis. For example, consider the case of p = 3 that is depicted schematically in Figure 1d. If a Θ pulse is

driven using ŝ
(X)
67 , the evolution operator can be written

exp

(
−iΘ

2
ŝ

(X)
67

)
=

(
16 0
0 exp

(
−iΘ

2 σ
(X)
) ) , (S.8)

where 16 is the 6 × 6 identity operator. This performs a rotation on the |110〉 ↔ |111〉 subspace. Next, we
can shift the relative phase between those two states and the rest of the space by, for instance, applying
other atomic Pauli interactions (either simultaneously or sequentially)

Û67 ≡ ei
π
8 exp

(
−iπ

8

(
2ŝ

(Z)
57 + 2ŝ

(Z)
46 + ŝ

(Z)
15 + ŝ

(Z)
37 + ŝ

(Z)
04 + ŝ

(Z)
26

))
, (S.9)

and the resulting rotation is a Deutsch gate [13]:

Û67 exp
(
−iθŝ(X)

67

)
=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos (θ) sin (θ)
0 0 0 0 0 0 sin (θ) i cos (θ)


= D3(θ).

(S.10)

A 3-qubit Toffoli gate is the special case D3(π/2). Extensions of these ideas to perform other types of gates
(e.g. swap, cswap, cz, etc.) can be obtained by straightforward substitutions. For example, an intra-atomic
p-qubit Deutsch gate (of which cnot and p-qubit Toffoli gates are special cases) can be performed by driving
a rotation on |11 · · · 10〉 ↔ |11 · · · 11〉 followed by phase shifts,

Dp(θ) = ei
π
2p exp

(
−i π

2p

2p−3∑
`

ŝ
(Z)
`,f(`)

)
exp

(
−iθŝ(X)

2p−2,2p−1

)
(S.11)

where f(`) ≡ 2p − 2 + (` mod 2).

9


	Polyqubit quantum processing
	Abstract
	 Acknowledgements
	 References
	 Supplemental Materials
	 Inter-atomic two-qubit gates
	 Inter-atomic xx gates
	 Inter-atomic zz gates

	 Intra-atomic Deutsch and Toffoli gates for p=3


