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Laser-type cooling with unfiltered sunlight
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Cooling of systems to sub-Kelvin temperatures is usually done using either a cold bath of particles or spon-
taneous photon scattering from a laser field; in either case, cooling is driven by interaction with a well-ordered
cold (i.e., low-entropy) system. However, there have recently been several schemes proposed for “cooling by
heating,” in which raising the temperature of some mode drives the cooling of the desired system faster. We
discuss how to cool a trapped ion to its motional ground state using unfiltered sunlight at 5800 K to drive the
cooling. We show how to treat the statistics of thermal light in a single-mode fiber for delivery to the ion and show
experimentally how the blackbody spectrum is strongly modified by being embedded in quasi-one-dimension.
Quantitative estimates for the achievable cooling rate with our measured fiber-coupled low-dimensional sunlight
show promise for demonstrating this implementation of cooling by heating.
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I. INTRODUCTION

Cooling is commonly accomplished by the coupling be-
tween a system of interest and a cold bath, with no further
interactions. However, in some cases the coupling between the
two is controlled by the occupation of some other mode that
connects them. A good example of this is laser cooling, where
the electromagnetic modes populated by laser photons allow
the system of interest to repeatedly spontaneously emit into
cold, nearly vacuum modes [1]. The cooling is thereby driven
by the highly occupied modes of the laser, without which the
cooling rate will fall to essentially zero.

However, since an ideal laser field is often approximated
as in a coherent state [2], it is a displaced vacuum and has
no entropy; the laser field can be thought of as being highly
ordered and in that sense also extremely cold.1 The lasers used
for laser cooling tend to have very narrow linewidths (typi-
cally �ν/ν < 10−8 for laser cooling atoms and molecules),
as that feature allows the absorption of laser photons to be
velocity dependent. One can therefore ask the following: Is it
necessary for laser cooling that the field that drives the cooling
step (i.e., that couples the system to the cold bath) also be
in a low-entropy state? If so, to what extent can we identify
the highly ordered nature of that laser field, as opposed to
the highly ordered nature of the nearly vacuum field, as being
responsible for the cooling?

Here we propose how the phenomenon known as cooling
by heating [3,4] can be used to illustrate the answer to these
questions when applied with unfiltered thermal light. Cooling
by heating refers to cases where the coupling between the
system of interest and the cold bath can be increased by
increasing the thermal occupation of a mode that couples

1A comet orbiting the Sun can still have a very cold temperature,
even if its atoms’ motional states have all been displaced to some
large, average energy in our reference frame.

the two and therefore the system can be cooled by heat-
ing that mode. This paradigm has been used to study some
counterintuitive scenarios exhibiting cooling by heating [5–8]
and open questions persist about the interplay between this
phenomenon and quantum correlations [9] and dissipative
generation of entangled states [3].

We begin by introducing an experimentally accessible sce-
nario from atomic physics where a single trapped atomic ion
is to be cooled to its quantum ground state via a repeated
cycle. Unitary (and therefore reversible, entropy-conserving,
and noncooling [10]) operations on the atom’s state are driven
by a laser, followed by a separate step where only sunlight is
applied to cool the ion by coupling it to a cold vacuum mode.
In this paper, we use cooling to refer to any process that can
increase the peak phase-space density of the system, which
we define to be the nucleus and electrons of a trapped atomic
ion. Much like laser cooling, the near-vacuum modes of the
electromagnetic field serve as the cold thermal bath in this
scheme, and the field that couples the system to the bath is
said to drive the cooling, as in “laser cooling” and “cooling
by heating.” We analyze the achievable temperature in the
presence of multiple baths at different temperatures using a
model of virtual qubits [11,12]. We then discuss the statistical
physics of blackbody radiation confined in a single-mode
optical fiber for delivery to the ion and observe how dimen-
sionality affects the spectrum of a blackbody by analyzing
fiber-coupled sunlight with a spectrometer. We conclude with
an estimate of the achievable experimental cooling rate in this
system.

II. COOLING AN ION BY APPLYING THERMAL LIGHT
TO COUPLE IT TO THE VACUUM

The form of laser cooling that we will consider for this
demonstration is known as resolved-sideband cooling [13,14]
and has been implemented with lasers to cool ions [15], atoms
[16], and micromechanical oscillators [17] to their quantum
ground states of motion.
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FIG. 1. Atomic level structure for sideband cooling. (a) Three-
level atom with an S ↔ D transition at ω1, a D ↔ P transition at
ω2, and an S ↔ P transition at ω3. (b) Step I of the cooling cycle,
in which a red sideband of the S ↔ D transition is driven by a laser
at frequency ω� = ω1 − ωmotion. (c) Step II of the cooling cycle, in
which any population in D is returned to S via excitation to P from
absorption of a photon at ω2 followed by spontaneously emitting a
photon at ω3. We propose that the light at ω2 can be provided by
blackbody radiation from the Sun.

For a harmonically trapped atomic ion, the ion’s motion
in the trap is periodic at frequency ωmotion and this gives
rise to the appearance of phase-modulated sidebands on the
spectrum of applied laser light as observed in the rest frame
of the ion. In the laboratory frame, this means that the ion’s
optical absorption spectrum consists of not only a carrier peak
at the rest-frame resonant frequency of some optical transition
(call it ω1), but also sidebands at ±ωmotion from the carrier (as
well as at ±2ωmotion and so on). If the laser frequency ω� is
set to be resonant with the feature at ω� = ω1 − ωmotion (the
red sideband), the ion can absorb photons with energy h̄ω�

but it will emit them with an average energy closer to h̄ω1.
Each cycle then removes approximately h̄ωmotion of thermal
energy on average, cooling the ion. Since the strength of the
red sideband goes to zero as the ion’s motion approaches the
ground state, resolved-sideband cooling is capable of cooling
the ion to its quantum ground state and then ceases to have
any effect (in the absence of other sources of heating).

Since the spatial extent of the ion’s harmonic motion
(x0 = √

h̄/2mωmotion, typically approximately equal to 5 nm)
is much smaller than the wavelength of radiation at that
frequency (λ = 2πc/ωmotion, typically approximately equal
to 1 km), it is a very poor antenna and the ion’s motion
is substantially impedance mismatched to electromagnetic
radiation. In the absence of technical electric field noise,
the motion of ions trapped inside room-temperature vacuum
chambers remain out of equilibrium with the chamber for
all relevant experimental timescales, and we will ignore any
direct coupling between light and motion.

The scheme we consider for sideband cooling of a trapped
ion is shown in Fig. 1 and consists of a repeated two-step
cycle as follows. In step I [Fig. 1(b)] the ion is illuminated
by a narrow-linewidth laser on the red sideband of the S → D
transition. The intensity and illumination time are chosen to
fully transfer population to the (long-lived) D state for ions
with energy near their thermal average energy and then the
laser is turned off. On average, this step can reduce the mo-
tional energy of the ion, but it also adds a much larger amount

of total energy in the form of internal excitation. Entropy from
the motional state has been partially transferred to the internal
state of the ion in this unitary process.

Although the kinetic energy of the ion’s center of mass has
decreased in step I, this alone does not constitute cooling of
the system, which includes the phase space of the electrons.
To cool the ion, peak phase-space density must increase and
entropy must therefore decrease. This strong cooling has been
shown to be impossible with external potentials (whether
static or time dependent) and instead requires a dissipative
process [10]. Since step I is unitary and therefore reversible,
the total entropy of the ion has not changed and the laser has
not cooled the system.

In step II [Fig. 1(c)] the ion is illuminated with light ca-
pable of driving any population in the long-lived D state to
a higher-lying P state (with resonant frequency ω2) that can
quickly decay to the ground S state by spontaneously emitting
a photon (ω3) into an approximately unoccupied mode (ther-
mal states of optical-frequency modes at room temperature
are close to the vacuum state). This step does not change the
motional energy of the ion on average but does reduce the
total energy since the ion returns to its internal ground state.
However, unlike step I, this step is not reversible and the ion’s
entropy (and therefore temperature) has been reduced. The
optical modes at frequency ω3 contain information about the
ion’s motional state, which is to say that the spontaneously
emitted photon carries away entropy. This is the cooling step
in the process.

In a typical implementation of sideband cooling for ap-
plications in precision measurement or quantum information
processing, step II is driven by a laser at ω2. However, this
light need not be coherent nor narrow in linewidth, as its only
job is to couple the ion to the vacuum modes at ω3. For this,
we propose to use thermal light in the form of fiber-coupled
blackbody radiation at T� ≈ 5800 K from the Sun. Even if
this light has spectral density near ω1 and ω3, the driving of
those transitions will not directly change the motional energy
of the atom on average and this does not inhibit cooling to the
ground state (see Appendix B).

A. Minimum achievable temperature

To estimate the minimum temperature that can be achieved
with this scheme, we start with a steady-state version of the
sequence shown in Figs. 1(b) and 1(c) to illustrate thermaliza-
tion, for which we assume band-limited sunlight and utilize
the concept of virtual qubits [11]. Following that, we ana-
lyze the time-dependent scheme with unfiltered sunlight and
argue that it achieves the same limiting temperature insofar
as both scenarios yield a predicted minimum temperature
that is below what the limiting temperature will likely be in
practice due to other heating effects (such as momentum diffu-
sion from absorption and emission, or heating from electrical
noise).

If we wish to apply principles of thermodynamic equilib-
rium to the trapped ion example in Fig. 1, we need to identify
a bath that is brought into contact with the ion’s motion to cool
it. For this, we can simplify the time-dependent scheme into
a steady-state scheme by assuming that both the narrowband
laser light [Fig. 1(b)] and the sunlight (T2 = T�) that connects
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levels D and P [Fig. 1(c)] are applied simultaneously and
continuously and that the sunlight is band limited such that
it does not connect either upper state to S. In this case, the
S ↔ P transition is driven by room-temperature (T3 = Troom)
blackbody radiation and we can model the effect of the laser
on S ↔ D as a thermal field with temperature T� → ∞.

The continuous interaction of these three subsystems, each
with a unique temperature, with the ion’s motion can be ag-
gregated into an effective interaction of the motion with a
single virtual qubit with splitting ωV = ωmotion held at a virtual
temperature TV, which is given by [11] (see also Appendix A)

TV = ωV
ω3
T3

− ω2
T2

− ω�

T�

= ωmotion
ω3

Troom
− ω2

T�

. (1)

In the limit that ω3/Troom � ω2/T�, we conclude that the
minimum achievable temperature is given by the virtual tem-
perature

TV ≈ ωmotion

ω3
Troom. (2)

A thermal state of motion at TV has an average mo-
tional excitation of 〈nmotion〉 = [exp(βVh̄ωmotion ) − 1]−1 ≈
exp(−βVh̄ωmotion ), where β−1

i ≡ kBTi. Since we expect
kBTroom � h̄ω3, this corresponds to an ion in its ground state
of motion (TV ≈ 1 µK and n̄motion ≈ 10−46). Even in the limit
where Troom is replaced with T�, the virtual temperature is cold
enough to cool the ion to its ground state (see Appendix B).
We stress here that there are many potential sources of heating
in experiments that we have not attempted to capture with this
analysis, which focuses only on the steady-state solution with
thermal radiation fields (the blackbody limit). Our conclusion
is that ground-state cooling is possible with this scheme, but
we do not claim that it is necessarily practical to achieve
cooling all the way to TV.

For the time-dependent scheme of Figs. 1(b) and 1(c) with
unfiltered sunlight, if the sunlight is left on long enough for
the atom’s internal states to equilibrate, the atomic energy dis-
tribution will be held at T�. However, the periodic extinction
of that light in step I, as well as in particular the case if we
assume that the light is turned off at the end of the protocol
and the ion’s internal states are allowed to relax, indicates
that the atomic internal temperature will equilibrate to Troom.
As such, the effect of the laser is essentially to translate the
motional thermal state to an energy scale set by ω1 and allow
that system to thermalize to Troom, followed by relaxation
of that atomic excitation back to the energy scale of ωmotion.
We therefore expect the motional temperature to be limited
by these considerations to a scaled version of Troom, which is
precisely the temperature in Eq. (2). This is also the blackbody
limit for standard sideband cooling with laser light in a room-
temperature vacuum chamber.

B. Excitation rate from fiber-coupled blackbody radiation

An atom illuminated by a focused beam of thermal light
will not experience the same field as if it were inside a black-
body. Many modes will be in vacuum (or at least different
thermal) states due to the anisotropy of the illumination, rather

than in thermal states at the temperature of the blackbody. To
calculate the excitation rate 	 of a two-level atom initially
in its ground state (state manifolds {|ei〉} and {|gi〉} with de-
generacies ge and gg, split by ωeg) illuminated by focused
incoherent light, we adopt an Einstein rate equation approach

	 = Bgeρ(ωeg) (3)

= π2c3

h̄ω3
eg

ge

gg
Aegρ(ωeg), (4)

where Aeg and Bge are the Einstein A and B coefficients for the
transition and ρ(ωeg) is the spectral energy density (energy per
unit volume per unit angular frequency) at the ion’s position
at the transition frequency.

We consider that light from an ideal blackbody is coupled
into an optical fiber with a single Gaussian transverse mode
and this fiber’s output is being imaged onto the atom with
an imaging system having half-cone convergence angle ϑ .
We will further suppose, to keep our analysis consistent with
typical experimental hardware, that ϑ � 1, which allows us
to treat the optical system with the paraxial approximation.
We will assume that the fiber-coupled thermal light is the only
significant source of illumination to calculate the rate from
that contribution alone.

In the typical, textbook treatment of blackbody radiation,
the light inside a blackbody in equilibrium at temperature T is
characterized by a constant isotropic spectral radiance B(ω)
(power per unit solid angle, per unit area, per unit angular
frequency) given by Planck’s law of blackbody radiation

BP(ω) =
h̄ω3

4π3c2

exp(β h̄ω) − 1
. (5)

However, as we show in the next section, thermal light emerg-
ing from a single-mode fiber differs somewhat from a true
blackbody and is more conveniently characterized instead by a
power spectral density S(ω) (power per unit angular frequency
of a single transverse spatial mode). If the imaging system
is capable of focusing the fiber mode onto a (potentially
frequency-dependent) effective mode area A(ω), the spectral
energy density at the atom is given by

ρ(ω) = S(ω)

cA(ω)
, (6)

which can be used with Eq. (4) to calculate the excitation rate.
Given an instantaneous excitation rate 	pD from state D

to state P (see Fig. 1) for an atom with probability pD of
being in state D, the rate at which this results in a spontaneous
emission back to the ground state, which completes the step
of removing one quantum of motion on average, will be

ṅmotion = −	pDηSP, (7)

where ηSP ≡ APS/(APS + APD) is the branching fraction of
spontaneous emission from P to go back to S.

034109-3



AMANDA YOUNES AND WESLEY C. CAMPBELL PHYSICAL REVIEW E 109, 034109 (2024)

III. THERMAL LIGHT IN A SINGLE-MODE FIBER

The statistics of thermal light confined to quasi-one-
dimension2 (Q1D) has been discussed in various contexts,
including Johnson-Nyquist noise [18,19], photonics [20,21],
photovoltaic energy conversion [22], and extra spatial dimen-
sions [23,24]. We do not therefore present a new theoretical
result by deriving the power spectral density of blackbody ra-
diation embedded in Q1D. Here we present an optics-oriented
derivation to illustrate the origin of the spectrum we will use to
compare to experimental observations and a brief discussion
of how to reconcile the modified spectrum in the fiber with
Planck’s law.

We can consider a single-mode optical fiber (which is to
say, some waveguide that only supports one transverse mode
of the electromagnetic field at each frequency ω) of length
L (later we will take L → ∞) with periodic boundary con-
ditions and light allowed to propagate in only one of the
two possible directions. Assuming, for simplicity, that the
effective index of refraction in the fiber is n = 1, the allowed
frequencies will be ωi = i × 2πc/L and the density of states
per polarization will therefore be di/dω = L/2πc.

The average rate of photons in mode i passing through a
fixed reference plane in the fiber will be 〈ni〉c/L, so the time-
averaged power from mode i is Pi = h̄ωi〈ni〉c/L, where 〈ni〉 is
the average number of photons in mode i. Summing over the
two available polarizations, using 〈ni〉 = [exp(β h̄ωi ) − 1]−1

for the expected thermal population for a mode with split-
ting h̄ωi and temperature T = 1/kBβ, and taking the L → ∞
limit, we have the total time-averaged power

Ptotal =
∫ ∞

0
dω

h̄ω
π

exp(β h̄ω) − 1
= π

6h̄

1

β2
. (8)

From the integrand, we identify the power spectral density for
thermal light in a single-mode fiber,

S(ω) =
h̄ω
π

exp(β h̄ω) − 1
. (9)

This expression was used by Nyquist to explain thermal noise
in electrical circuits [18], but it is also the spectrum of power
for thermal light coupled into a single-mode fiber.

The spectrum of S(ω) (∝ω〈n〉) differs in shape from the
spectral radiance given by Planck [BP(ω) ∝ ω3〈n〉] and the
total power is proportional to T 2, as opposed to the more-
familiar T 4 of the Stefan-Boltzmann law in three dimensions.
Thermodynamics, however, requires that the two ends of the
fiber, if brought into optical contact with two isolated black-
bodies, will allow them to equilibrate through the fiber. How
this is possible if the spectrum in the fiber has a different
shape and peak position than the three-dimensional case can
be resolved as follows. We consider two extremes for the
transverse mode confinement in the fiber: (i) The divergence
angle of light from the fiber end is independent of ω, which is

2We are deliberate in not to referring to this as one-dimensional
light, which is a different topic entirely. Maxwell’s equations treating
the light in the fiber are fully three dimensional, and the embedding
in quasi-one-dimension refers to the fact that there is only one mode
available in each of the two transverse directions.

approximately true for a total-internal-reflection interpretation
of step-index fiber, and (ii) the mode area of the fiber is
independent of ω, which is approximately true for a photonic
crystal fiber. Cases that are intermediate between these two
are likewise handled as follows.

For case (i), optical considerations dictate that the effective
mode area A(ω) must be frequency dependent to maintain
a frequency-independent solid angle . For case (ii), (ω)
must be frequency dependent to ensure that A is independent
of frequency. For cases between these two extremes, the re-
lationship between the area of a diffraction-limited mode and
its solid angle is related to a well-known phase-space-volume
theorem in antenna theory, namely, that their product must be
equal to the square of the wavelength

A(ω)(ω) = λ2 =
(

2πc

ω

)2

. (10)

As pointed out by Dicke in the context of thermal noise in
microwave systems [25], this connects the one-dimensional
power spectral density to the radiance

B(ω) = S(ω)

A(ω)(ω)
. (11)

Since thermodynamics requires that this be equal to Eq. (5) in
thermal equilibrium, this argument highlights that Eq. (10) is a
basic consequence of Planck’s law. The assignment of spectral
radiance for single spatial modes is discussed in Appendix C.

Earlier we argued that the spectral energy density ρ(ω) at
the center of the focus of an optical system imaging a single
mode of thermal radiation onto a spot size A(ω) was given
by Eq. (6). Since the spectral radiance of that light will have
the same frequency dependence (spectrum) as Planck’s law
(5) but lower power, the thermal light can be called graybody
radiation, and we can use the ratio of the energy spectral
density to that inside an ideal blackbody to define an efficiency
(or geometric grayness) factor for the thermal light delivery
system,

G ≡ ρ(ω)

ρP(ω)
, (12)

where

ρP(ω) = ω2

πc3
S(ω) =

h̄ω3

π2c3

exp(β h̄ω) − 1
(13)

is the energy density inside an ideal blackbody.
Combining (6) with (10) and (13) allows us to write the

geometric grayness as

G =
λ2

4π

A(ω)
= (ω)

4π
, (14)

where (ω) is the solid angle of the mode of the imaging
system. In the limit that the mode solid angle covers all of the
available solid angle, we recover the ideal blackbody energy
density and G → 1.

IV. MEASURED POWER SPECTRUM
OF FIBER-COUPLED SUNLIGHT

To observe the predicted spectrum and power spectral
density of Eq. (9) and benchmark the optical power that
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can be coupled onto a trapped ion, three fibers with distinct
guiding regimes were employed: a single-mode step-index
fiber, a single-mode photonic crystal fiber, and a step-index
multimode fiber. The first two were discussed above and the
multimode fiber was used to compare to the three-dimensional
spectrum.

For each fiber, sunlight was coupled in using a roof-
mounted, home-built Sun tracker and a commercial, aspheric
fiber collimator lens as the collection optic. To keep sunlight
maximally coupled, the collimator lens is much larger than
the minimum diameter necessary to resolve the Sun from a
point source (which would be a diameter of Dmin ≈ 100 µm),
allowing for steady coupling efficiency even with pointing
instability. This system is able to maintain maximal coupling
for many hours.

To estimate the effect of atmospheric absorption and scat-
tering, as well as nonideal emission, we use a standard
reference spectrum [26] for sunlight on the surface of the
Earth for the case of a collecting lens oriented toward the Sun.
We use the ratio of the ideal three-dimensional Planck spec-
trum to the standard spectrum to create the expected standard
spectrum in Q1D. This spectrum is an average correction for
the Sun at a specific elevation in specific atmospheric condi-
tions and does not apply perfectly to our conditions at each
measurement; the true correction varies somewhat depending
on the elevation of the Sun, weather conditions, and pollution
levels.

To measure the power spectrum of the fiber-coupled light,
we measure the output with a fiber-coupled spectrometer
(Thorlabs model No. CCS175). We correct the measured out-
put with the response function provided by the manufacturer.
For the single-mode fibers, we also correct for the wavelength
dependence of light entering the spectrometer through a slit
using the mode properties in the fiber specifications. This
correction is done by treating the fiber mode as a Gaussian
beam between the fiber tip and the slit and then cutting off
parts of the beam that are blocked by the slit.

For the multimode fiber, Fig. 2 shows that we observe a fre-
quency dependence similar to the standard three-dimensional
Planck spectrum [Eq. (13)] since the fiber-coupled light can
occupy many transverse modes. The vertical scale in this case
is arbitrary, and we have roughly matched the height of the
measured and predicted spectra to allow comparison of their
shapes.

For the two single-mode fibers, the measured spectra are
shown in black and red in Fig. 3. The shapes of these spectra
are clearly modified from Planck’s law in three dimensions
(compare to Fig. 2). The predicted spectrum of Eq. (9) is
shown in dark blue, along with a prediction that takes into
account the empirical solar spectrum at the Earth’s surface
(shaded blue).

A drop-off in all three spectra can be seen at short wave-
lengths. This is in part caused by the effective range of the
antireflective coating on the fiber collimator, which causes a
bend around 580 nm.

To calibrate the vertical scale, a shortpass filter is in-
serted in front of the input collimator to remove light with
wavelengths longer than λ = 900 nm, and the power deliv-
ered by the fiber is measured with a calibrated photodiode

FIG. 2. Measured spectrum of sunlight coupled into a step-
index, multimode optical fiber (black). The smooth green trace
shows the theoretical frequency dependence of light emitted by an
ideal three-dimensional blackbody, normalized to a peak height near
the measured value to allow comparison. The shaded green-line
trace shows the same theoretical spectrum with the atmospheric
correction.

power meter. By matching this power to numerical integra-
tion of the measured spectrum, we obtain power spectral
density.

By comparing this to Eq. (9), we obtain the delivery ef-
ficiency η(ω) as the ratio of our measured power spectral
density to the ideal Q1D spectrum at T�. In the visible and
near-infrared regions, we find efficiencies of η = 0.6–0.9 un-
der good seeing conditions with both types of single-mode
fiber.

FIG. 3. Measured power spectral density of sunlight coupled into
a single-mode step-index optical fiber (black) and a photonic crystal
fiber (red), with wavelengths longer than 900 nm filtered out. The
measured spectrum agrees with the theoretical curve for an ideal
blackbody in Q1D [blue line, Eq. (9)] and the spectrum with atmo-
spheric correction for the Q1D case (blue shaded region).
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V. ESTIMATE OF COOLING RATE
FROM MEASURED FIBER OUTPUT

We can now estimate the achievable cooling rate using
fiber-coupled sunlight for our experimental parameters as fol-
lows. We consider a demonstration with Ba+, for which the
cooling light (ω2 in Fig. 1) is near a wavelength of 614 nm.

Loss in 200 m of optical fiber from the roof to the labora-
tory is measured to be 35%–40% at this wavelength, giving an
overall delivery efficiency of η ≈ 0.35–0.60. For estimates of
cooling rates, we use η ≈ 0.50, which we have measured in
the laboratory.

The imaging system is capable of focusing the fiber output
to a spot size of w0 = 20 µm, which corresponds to a geomet-
ric grayness of G = 5 × 10−5. The power spectral density in
this mode can be related to Eq. (9) via

Sexp(ω2) = ηGS(ω2) ≈ 2.5 × 10−5S(ω2). (15)

Combining this power spectral density with the atomic param-
eters for Ba+ yields an expected cooling rate of

ṅmotion = −8.2 phonons/s (16)

for initial motional states well above the ground state, which
corresponds to approximately 0.4 mK/s for a mode frequency
of ωmotion = 2π × 1 MHz. Resolved sideband cooling is used
starting near the Doppler limit, less than 1 mK for Ba+.
Heating rates that are comparable (smaller) in magnitude
to (than) this cooling rate estimate (ṅmotion < 10 phonons/s)
have been measured for ions in Paul traps [27–32], and lower
rates (ṅmotion < 1 phonon/s) have been measured in Penning
traps [33,34]. It therefore appears feasible that fiber-coupled
sunlight may be capable of cooling a trapped ion to its ground
state of motion.

While this approach with broadband thermal light is slower
and less practical than the typical laboratory implementa-
tion of resolved sideband cooling with lasers, it provides a
relatively simple and experimentally accessible example of
cooling by heating. The possibility of achieving ground-state
cooling using this method exposes the mechanism of cooling,
which is not the low-entropy state of the laser mode as is com-
monly understood. Instead, the cooling is driven by the optical
pumping (step II) or driving to a state that spontaneously emits
a photon, carrying away entropy and cooling the ion.
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APPENDIX A: DERIVATION OF VIRTUAL
QUBIT TEMPERATURE

We consider the total Hilbert space of our system to be
composed of a subspace for the motion of the ion, Hmotion,
with Hamiltonian Hmotion = h̄ωmotion(a†

motionamotion + 1
2 ); the

laser field H� with Hamiltonian H� = h̄ω�(a†
�a� + 1

2 ); the field
of the sunlight in the vicinity of ω2, H�, with Hamiltonian
H� = h̄ω2(a†

�a� + 1
2 ); and the atomic excitations Hatom with

Hamiltonian Hatom = h̄ω3|P〉〈P| + h̄ω1|D〉〈D|. For a single

cycle of the cooling scheme shown in Fig. 1, we need only
consider a two-level subspace of the optical fields (which we
will denote with primes, as in H′) and we can consider them
in the Fock basis as consisting of |n〉 and |n − 1〉 photons for
the state before and after an absorption event, respectively. For
the atomic subspace, we can proceed by considering only the
two-level system spanned by |S〉 and |P〉, and the Hamiltonian
will be H ′

atom = h̄ ω3
2 σZ , where we will refer to this two-

level system with spin notation: σZ ≡ |P〉〈P| − |S〉〈S|. With
these reduced versions, we can express the Hilbert space of
interest as

H = Hmotion ⊗ H′
� ⊗ H′

� ⊗ H′
atom. (A1)

Following [12], we first consider that the cooling scheme is
designed to ensure that the only way the atom can be excited
to |D〉 is through the simultaneous annihilation of a phonon
and a laser photon, the operator for which is amotiona�. The
cooling cycle then gives rise to an interaction Hamiltonian of
the form

V ∝ (
amotiona�a�σ

(atom)
+ + a†

motiona†
�a†

�σ
(atom)
−

)
, (A2)

where σ
(atom)
+ ≡ |P〉〈S| is the atomic raising operator.

We can now identify the system that exchanges energy with
the motion by defining the virtual qubit raising operator

σ
(V)
+ ≡ a�a�σ

(atom)
+ (A3)

to cast (A2) in the form

V ∝ (
amotionσ

(V)
+ + a†

motionσ
(V)
−

)
. (A4)

The system now evolves in a smaller Hilbert space

H′ ≡ Hmotion ⊗ HV, (A5)

where the virtual qubit subspace is only two dimensional. The
virtual qubit described by the raising operator (A3) has an
energy splitting at frequency

ωV = −ω� − ω2 + ω3

= ωmotion. (A6)

To find the temperature of the virtual qubit, we apply the
statistics of thermal equilibrium between the populations in
the excited state p(i)

e and the ground state p(i)
g to each two-level

subsystem [11],

p(i)
e

p(i)
g

= exp

(
− h̄ωi

kBTi

)
, (A7)

where kB is the Boltzmann constant. We find

exp

(
− h̄ωV

kBTV

)
= p(V)

e

p(V)
g

= p(�)
g p(�)

g p(atom)
e

p(�)
e p(�)

e p(atom)
g

(A8)

= exp

(
h̄ω2

kBT2
+ h̄ω�

kBT�

− h̄ω3

kBT3

)
.

Solving (A8) for TV gives

TV = ωV
ω3
T3

− ω2
T2

− ω�

T�

. (A9)

034109-6



LASER-TYPE COOLING WITH UNFILTERED SUNLIGHT PHYSICAL REVIEW E 109, 034109 (2024)

APPENDIX B: VIRTUAL TEMPERATURE
IN CONTINUOUS SUNLIGHT

If we neglect the coupling to room-temperature blackbody
radiation and assume, in the service of providing a conserva-
tive estimate of the achievable temperature, that both of the
non-laser-addressed transitions can be driven by sunlight at
T�, we have

TV = ωV
ω3
T�

− ω2
T�

− ω�

T�

. (B1)

Again taking the limit as T� → ∞ yields

TV = ωmotion

ω3 − ω2
T�

= ωmotion

ω1
T�. (B2)

For alkaline-earth ions, kBT� < h̄ω1 and we see that even
in this case, we expect most of the population to be in
the motional ground state for a motional temperature given
by (B2).

APPENDIX C: SPECTRAL RADIANCE OF SINGLE MODES

While Eq. (11) provides an explanation for how to con-
nect the power spectral density of thermal light confined to
Q1D to the spectral radiance of blackbody radiation in three
dimensions, the spectral radiance of thermal light emerging
from a single-mode fiber will be highly anisotropic. In order
to predict the energy density at a particular position in space
in the far field, the angular distribution is needed, and this
depends upon the fiber’s mode area.

For a single Gaussian mode of radiation (1/e field radius
w0) there are multiple mode areas that could be assigned.
For example, it is common to adopt the integrated inten-
sity, or so-called top hat definition [35], ATH ≡ P/Imax =∫

dA exp(−2ρ2/w2
0 ) = π

2 w2
0, where P is the power in the

traveling-wave mode and Imax is the peak intensity at the
center of the mode. This is attractive from a radiometry per-
spective since it is the area of a hole in an opaque screen
that would pass the same power P from normally inci-
dent plane waves of intensity Imax. Adopting this, with a
straightforward application of paraxial Gaussian optics, we
can write the angular distribution of the spectral radiance in
the form

B(ω, θ ) = S(ω)

ATH

2

π

(
ωw0

2c

)2

exp

[
−2 sin2(θ )

/(
2c

ωw0

)2
]
.

(C1)

However, care must be used when interpreting this in the
context of radiative thermal transport, as this would imply that
the differential spectral radiance evaluated at the peak of the
angular distribution, θ = 0, exceeds the value of a Planckian
blackbody by a factor of 4:

Bmax(ω)d = S(ω)

ATH

2

π

(ωw0

2c

)2
d

= S(ω)
4

λ2
d

= 4BP(ω)d. (C2)

At first glance, this seems to violate thermodynamic prin-
ciples. For example, one could imagine the use of a series of
fibers that are all carrying thermal radiation from a source at
temperature T to tile the full solid angle surrounding another
body, thereby illuminating it with an approximately isotropic,
average spectral radiance that is four times more powerful
than that inside the source, which would allow it to equilibrate
to a temperature exceeding the source.

However, while the mode area ATH can be useful for de-
scribing the spatial distribution of power in a Gaussian mode,
the mode itself technically spans an infinite transverse extent,
and this infinite support precludes the tiling of space by ad-
jacent orthogonal modes. If we instead sharply cut off the
Gaussian spatial mode at finite radius Rc to allow adjacent
modes to be spaced by 2Rc, the degradation in peak spectral
radiance per mode caused by spreading of the angular dis-
tribution from diffraction at the cutoff must to be taken into
account. For fixed total transmitted power spectral density per
mode, the optimum cutoff radius is zero, asymptotically ap-
proaching a top-hat mode, for which the peak spectral density
is a factor of 4 smaller than Eq. (C2). It may therefore be safest
to use a well-defined finite support when defining the mode
area for radiative thermal transport with Gaussian modes, as
the mode itself requires a larger area than just its variance (or
full width at half maximum) to retain the far-field behavior
described by Gaussian optics.

The broader conclusion here is that care must be used when
trying to use spectral radiance for single isolated modes, as
the mode area (analogous to position) and the mode solid
angle (analogous to momentum) of a single mode cannot be
sharply defined simultaneously. A single-mode fiber emitting
thermal radiation at temperature T is in many ways similar
to a blackbody at T , but its emitted radiance is not isotropic
and it does not follow the Lambert or Stefan-Boltzmann laws.
Many of the results that may be familiar for three-dimensional
Planckian blackbody radiation are not necessarily valid for an
isolated spatial mode.
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