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Abstract
Laser-controlled entanglement between atomic qubits (‘spins’) and collective motion in trapped
ion Coulomb crystals requires conditional momentum transfer from the laser. Since the
spin-dependent force is derived from a spatial gradient in the spin–light interaction, this force is
typically longitudinal—parallel and proportional to the average laser k-vector (or two beams’
k-vector difference), which constrains both the direction and relative magnitude of the accessible
spin–motion coupling. Here, we show how momentum can also be transferred perpendicular to a
single laser beam due to the gradient in its transverse profile. By controlling the transverse gradient
at the position of the ion through beam shaping, the relative strength of the sidebands and carrier
can be tuned to optimize the desired interaction and suppress undesired, off-resonant effects that
can degrade gate fidelity. We also discuss how this effect may already be playing an unappreciated
role in recent experiments.

1. Introduction

Quantum computers based on trapped atomic ions use entanglement between the atomic qubits and
collective motion to mediate conditional quantum logic between spatially separated qubits [1]. This
spin–motion entanglement is produced by applying a spatially-varying interaction with an electromagnetic
field that gives a spin-dependent force. In laser-driven, ion–ion entangling gates, this force is derived from
the longitudinal gradient of the electric field of a laser beam (or, for Raman processes, a pair of beams), in
which case the direction of spin–motion coupling is fixed by the laser beam propagation axes [2]. This
precludes direct control of ion motion perpendicular to the beam, and also fixes the relative strengths of the
resonant spin-only and spin–motion couplings. In many experiments using surface electrode traps, optical
access is restricted to be parallel to the surface plane [3]; this restriction makes it difficult to access motion
perpendicular to the plane, both for cooling and coherent operations.

Two workarounds to access out-of-plane motion are the development of traps with tilted principal axes
[4–9], or the introduction of time-dependent cross-coupling potentials [10]. These indirect techniques take
advantage of the approximate separability of the secular motion into components along the principal axes
of the trap to provide access to part of the motion (the secular component), but direct access to the full
motional state (for instance, to diagnose excess micromotion) remains challenging [7, 11]. The method
presented here has the additional benefit of only requiring a single beam to couple to motion. Alternative
approaches for controlling spin–motion coupling using static and near-field gradients are being pursued by
some groups [12–18], however these are constrained by the fixed electrode geometry and typically have a
lower associated Rabi frequency than is possible with the technique we describe here.

Here, we show that the transverse, as opposed to longitudinal, gradient of the spin–light interaction can
also be used to produce and control spin–motion entanglement, even perpendicular to the laser
propagation direction. By adjusting the spatial profile and/or position of the beam, the strength of motional
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sidebands can be tuned, even to the point where the carrier transition is fully suppressed. By extinguishing
the carrier during sideband operations and extinguishing the sidebands during carrier operations, this
flexibility has the potential to suppress errors from off-resonant transitions [19]. As a proof of principle, we
demonstrate this transverse spin–motion coupling using a single trapped ion. The stimulated Raman
spectrum driven in a co-propagating beam geometry shows motional sidebands driven by the beam’s
transverse intensity gradient, and we show that their strength can be tuned by varying the ion temperature,
in agreement with the model.

2. Theory

We consider a laser-driven electronic transition in a single trapped ion and show how the finite transverse
extent of the beam can change the motional state perpendicular to the beam, even when the (conventional
longitudinal) Lamb–Dicke factor is essentially zero. Since the technique presented here is applicable to
every type of electronic transition used for quantum information processing (E2, E3, stimulated Raman,
etc.), we present it without reference to the details of the internal state manipulation where possible and
point out where differences may arise. We assume that the wavevector of the laser field (or wavevector
difference, for stimulated Raman transitions) is aligned with +ẑ, which we also assume is a principal axis of
the trapping potential such that the longitudinal gradient cannot couple to motion in the x–y plane. For
simplicity, we consider motion along only the x direction and neglect the other two; a full treatment that
includes y and z can be constructed in a straightforward manner. We can write the matrix element
associated with this transition as

Ωn′,n = Ω0〈n′|f (x)|n〉 (1)

where n (n′) is the initial (final) motional state along x and the function f(x) is the transverse spatial profile
of the laser-ion coupling, Ω(x) ≡ Ω0f(x). We absorb all of the electronic transition details in Ω0 and assume
the atomic matrix element is proportional to f 1.

While the beam profile can in principle have a variety of functional forms we will first assume it is
Gaussian, with f(x) ≡ exp(−2x2/w2) (shortly, we also consider the case of a TEM10 mode). In the case of a
stimulated Raman transition, f(x) describes the product of the electric fields, E1E∗

2. Assuming a
co-propagating configuration where the two frequency components have identical beam profiles, w = w0,
the Gaussian beam waist, defined as the 1/e2 intensity radius. In the case of a single photon transition (e.g.
E2 or E3), f(x) is the profile of the electric field and w =

√
2w0.

We will treat the spatial profile of the beam(s) by Taylor expanding about the ion’s equilibrium position
(x = 0) to second order in x. A Gaussian spatial profile that is offset from the ion’s equilibrium position by
a distance d (that is, f(x − d), as shown in figure 1(a)) produces matrix elements of the following form (up
to second order in x0):

Ωn′ ,n = Ω0f (−d)

√
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, (2)

where n< (n>) is the lesser (greater) of n and n′, and x0 ≡
√

�/2mω is the motional mode’s ground state
wavefunction size, with m the mass and ω the secular frequency. We note that when d = 0 the Rabi
frequency of all odd-order sidebands vanishes, as can be seen in equation (2) for |Δn| = 1. Exact
expressions for Ωn′ ,n and are provided in appendix A.

In the Lamb–Dicke regime, a simple analytic expression describes the longitudinal spin–motion
coupling, to lowest order in the Lamb–Dicke parameter η ≡ kx0 (for wavevector k) [22]. We compare this
to the case of transverse spin–motion coupling by defining an effective Lamb–Dicke parameter, η̃(s), where s
is the sideband order. As an example, if d = w/2, for the first order sidebands we have

Ωn+1,n = η̃(1)Ω0f (−w/2)
√

n + 1 (3)

with

η̃(1) ≡
2x0

w
≈ 0.014

√
100 amu

m

√
2π × 1 MHz

Ω

1 μm

w
. (4)

1 Recent work has examined how a transverse electric field profile can drive an electronic, rather than motional, transition [20], and
how spin angular momentum, rather than linear momentum, of photons can provide a momentum kick to trapped ions [21].
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Figure 1. Schematic showing the geometry considered. A laser beam directed along z is incident on a trapped ion (red). (a) and
(b) Show the case where the interaction strength has a Gaussian (TEM00) transverse profile (black solid line). Depending on the
beam position, the profile at the ion can be approximately linear or quadratic (red solid line), coupling to first- or second-order
sidebands, respectively. (c) Shows the case where the profile is produced by a TEM10 mode, which suppresses carrier transitions
while still coupling to motion.

When d = 0, the effective Lamb–Dicke parameter associated with the second-order sidebands has the same
form (Ωn+2,n ∝ η̃2

(2)/2, with η̃(2) = 2x0/w). Unlike longitudinal spin–motion coupling from a plane wave,
where the pth order sideband term is approximately proportional to ηp/(p!), the expressions for the
sideband strengths from transverse coupling are a function of the beam profile and position, and should be
calculated individually for each sideband order.

The intuitive conclusion that we can draw is that transverse coupling to the ion motion is significant
once the wavefunction size,

√
nx0, becomes comparable to the transverse profile size, w. As the spatial extent

of the beam becomes smaller, the corresponding transverse momentum spread of each photon increases, in
accordance with the uncertainty principle, and the nonzero variance of this transverse momentum can
change the transverse momentum of an ion without violating conservation of linear momentum. For the
case of a stimulated Raman transition using a single focussed beam centred on the ion, one can associate an
effective wavevector, keff ≡ η̃/x0 = 2/w0, with this momentum spread. An equivalent value of keff can be
achieved with two infinite plane waves crossing at an angle equal to the half-cone divergence angle of the
single beam, θ ≡ λ

πw0
, i.e. the coupling strength with the single focussed beam is half that for a pair of

crossed plane waves defined by the same angular acceptance. This is a spatial manifestation of Ramsey’s
famous factor of two [23].

Having seen that transverse coupling to odd-order sidebands disappears with a centered TEM00 beam,
we now show that coupling to even-order sidebands (and carrier) can be extinguished if f(x) is an odd
function of x, such as with a TEM10 mode (cf figure 1(c)) driving either a single photon transition (such as
E2) or one of the arms of a stimulated Raman transition (with the other arm uniform intensity). Here, the
Rabi frequency, Ω(x) ≡ Ω0f(x), vanishes at the equilibrium position of the ion and has odd parity. For a
TEM10 beam with waist w0, this configuration produces the same Rabi coupling for the single-photon and
Raman cases, f (x − d) ≡ H1(

√
2(x − d)/w0) exp(−(x − d)2/w2

0) = 2
√

2 x−d
w0

exp(−(x − d)2/w2
0) where

H1(x) is the first Hermite polynomial. Once again expanding to second order in x0 gives the matrix
elements for the carrier and the first and second sidebands:

Ωn′,n = Ω02
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. (5)

Since f(x) is odd, when d = 0 the carrier and all even order sidebands vanish to all orders in x0 (the exact
expression for Ωn′,n and arbitrary order Hermite–Gaussian profile can be found in appendix A). This
suggests that by switching between transverse spatial modes, the carrier or first sidebands can be suppressed
as the application demands, which can be used to reduce undesired off-resonant effects. For example, using
a TEM10 could allow for Mølmer–Sørensen type gates [24] to be used at higher temperatures as the
strengths of the carrier and second sidebands are greatly reduced. A related effect in the longitudinal
direction has been explored for optical standing waves [22, 25–28], but the motional coupling in that case is
still constrained to be along the longitudinal direction.

The appearance of sidebands (i.e. motional coupling) from the transverse spatial profile of a laser beam
can be understood semi-classically in the time domain by considering that the oscillatory motion of an ion
into and out of a laser beam gives an intensity modulation that produces sidebands at this oscillation
frequency, which can in turn drive motional-state-changing transitions. Alternatively, one can consider the
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Figure 2. (a) Structure of the 138Ba+ Zeeman qubit showing the laser field applied to drive stimulated Raman transitions (b)
schematic of ion trap showing two of the four segmented rods and the single circularly polarised beam used to drive the Raman
transitions.

associated Bloch sphere. In a frame rotating at the qubit splitting, the Bloch vector precesses azimuthally at
a frequency equal to the detuning, Δ. With negligible ion motion, no significant population transfer occurs
(assuming Ω 
 Δ). With ion oscillation comparable to the beam size, the Rabi frequency will be
modulated at ω and 2ω, associated with the linear and quadratic parts of f(x), respectively. When Δ = ω, or
2ω, the precession and intensity modulation are synchronized. The result is a Bloch vector that ‘spirals’ up
or down the Bloch sphere even for Ω 
 Δ [see supplemental material (https://stacks.iop.org/QST/6/
024003/mmedia)].

3. Experiment

The analysis we have presented indicates that if motional coupling can be driven by the transverse profile of
a laser beam, sidebands should appear even for a co-propagating stimulated Raman transition (for our
setup, this gives a longitudinal Lamb–Dicke parameter of η ≈ 10−7; note that the two frequencies required
for the Raman transition are produced by the laser’s pulsed nature, ensuring collinearity). The experiment
we perform to observe these sidebands is shown schematically in figure 2. Briefly, we trap a single
laser-cooled 138Ba+ ion in a linear Paul trap made with four segmented cylindrical rods. The diagonal
surface-to-surface distance between the rods is 2r0 = 2 cm. RF voltages are applied to the central segments
at a frequency of 1 MHz to produce radial secular frequencies ωrad ≈ 2π × 100 kHz. The axial secular
frequency is ωax = 2π × 36 kHz.

We define a Zeeman qubit with the two electron spin states (|↓〉, |↑〉) of the 2S1/2 ground state manifold,
which are split by 151.8 MHz by the application of a magnetic field of around 5.5 mT. Preparation of the
qubit states is performed via optical pumping with circularly polarised light on the 2S1/2 ↔2 P1/2 transition.
Readout of the qubit state is achieved via electron shelving; circularly polarised light at 455 nm selectively
optically pumps one of the qubit states to the long lived (τ ≈ 30 s) 2D5/2 manifold via the 2P3/2 manifold.
Coherent transfer between the qubit states is driven by a far-detuned stimulated Raman transition via a
mode-locked Nd:YVO4 laser2. The qubit splitting is close to twice the repetition rate of the laser such that
different frequency components of the laser light can resonantly drive the qubit transition when the
magnetic field tunes the qubit splitting into resonance. Using the frequency comb structure of a
mode-locked laser for this type of manipulation has previously been demonstrated in work with hyperfine
qubits [29], but to our knowledge this is the first application to a Zeeman qubit3.

To observe sidebands, we direct a single (i.e. ‘co-propagating’) circularly polarised beam at 45◦ to the
axis of the trap and at 90◦ degrees to the quantization axis defined by the applied magnetic field (see
figure 2). Even though none of the principal axes of the trap is perpendicular to the laser beam, traditional
(i.e. longitudinal) spin–motion coupling will be effectively absent for this co-propagating geometry, and the
appearance of sidebands will be entirely due to transverse spin–motion coupling. We perform Rabi
spectroscopy on the Raman transition by measuring the spin flip probability while varying the applied
magnetic field with a shim coil.

2 Coherent Paladin SCAN 532-36000.
3 A mode-locked laser has been used to coherently manipulate a Zeeman qubit, but employing acousto-optic elements to generate the
necessary beat note [30].
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Figure 3. Appearance of transverse spin–motion coupling from a misaligned beam. (a) Calculated and (b) measured
single-beam stimulated Raman spectra of the qubit as a function of beam position show sidebands for axial ion motion when the
beam is off center. Horizontal lines indicate the slices shown in (c). The only free parameter used to generate the theory plots is
the ion’s motional temperature, which is 3 mK.

Figure 3 shows the probability of a stimulated Raman transition (with state preparation and
measurement errors included) as a function of the detuning and beam offset. When the beam is misaligned,
sidebands associated with motion along the trap axis are clearly visible at detunings of ±36 kHz, equal to
the axial secular frequency. These sidebands vanish when the beam is centered on the ion as the gradient of
the beam profile disappears, cf figure 1.

The plot in figure 3(a) shows the numerical solution of the Schrodinger equation with Rabi frequencies
calculated as previously described. The ion temperature is the only free parameter used to match the
experimental data (see supplemental material). The transverse Lamb–Dicke parameter for the first-order
axial sideband ranges from η̃(1) = 0 to 0.021 in figure 3. While this Lamb–Dicke parameter is small, the
3 mK mean occupation number of n̄z = 1800 can produce significant transverse motional coupling.

4. Discussion

Spin–motion coupling due to the transverse electric-field profile presents an additional tool with which to
manipulate trapped ions. However, it may also represent an additional source of infidelity in trapped ion
quantum computers. In many cases, single-site addressability is required and achieved via tightly focused
laser beams which introduces spin–motion coupling for the transverse directions. It has already been shown
that residual motion transverse to such beams can produce gate infidelities [31], but we now draw attention
to the possibility that these beams can also impart momentum in the transverse directions. With reference
to figure 4, we consider as an example the trapped ion quantum processor of Debnath et al [32]. Individual
171Yb+ ions, spaced by s ≈ 5 μm in a trap with axial secular frequency ω/2π = 270 kHz, are addressed by a
pair of stimulated Raman beams. One of the beams provides a uniform intensity, while the other has waist
w0 ≈ 1.5 μm. Assuming a misalignment of d = w/2, we use equation (2) to calculate the transverse
Lamb–Dicke parameters associated with the target ion to be η̃(1) ≈ 0.0098 and η̃(2) = 0 for the first and
second sidebands, respectively. Similarly for the neighbouring ion, η̃(1) ≈ 0.037 and η̃(2) ≈ 0.035. If the
quoted crosstalk in [32] of 4% (interpreted as the ratio of carrier Rabi frequencies between adjacent ions)
were solely due to beam misalignment, this would imply d ≈ 1.8 μm and hence η̃(1) ≈ 0.017, η̃(2) ≈ 0.014
(η̃(1) ≈ 0.030, η̃(2) ≈ 0.028) for the target (neighbouring) ion. Transverse spin–motion coupling would, in
general, lead to residual spin–motion entanglement in a two-qubit gate. We estimate that for a
Mølmer–Sørensen type interaction [24, 33], with the parameters we have outlined and assuming the axial
modes are cooled to the Doppler limit, this would produce an infidelity at approximately the 10−5 level.
While this is too small to be of concern, it could become problematic for longer ion chains, or for traps
where the axial modes are less far detuned from the mode used for computation; a fourfold reduction in
detuning would produce an infidelity at the 10−3 level.
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Figure 4. Laser incident on two ions, misaligned from a ‘target’ ion (left) by d. The transverse spatial profile of the interaction
strength is approximately linear for both the target ion and the neighbouring ion, which can produce spin–motion coupling
along the x direction.
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Appendix A. Exact expression for transverse Rabi frequency

While the use of a Taylor series in equations (2) and (5) provides intuition about how coupling between
motional states depends on the transverse profile, an exact analytic expression for the Rabi frequency also
exists. The equations below give the Rabi frequency associated with driving a transition from motional state
n to motional state n′ using transverse spin–motion coupling from a laser beam with a specific transverse
spatial mode (along the motional mode direction) that is displaced by a distance d from the trap centre. We
write the Rabi frequency in terms of the function Jn′,n,p as

Ωn′,n,p

Ω0
= 〈n′|Hp

[√
2(x − d)/w0

]
e−(x−d)2/w2 |n〉 =

Jn′,n,p(α, β, δ)√
π 2n′+n n′! n!

(A.1)

where

α(w) ≡
(

2x0

w

)2

, β ≡ 2x0

w0
, and δ ≡ d√

2x0
. (A.2)

(Recall that in the case of a Raman transition with one TEMp0 beam and one TEM00 beam, we identify
w = w0, whereas for either a Raman transition with one TEMp0 beam and one uniform beam, or for a
single-photon transition driven by a TEMp0 beam, we use w =

√
2w0.) The integral Jn′ ,n,p is given by
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, (A.4)

where ξ = x/
√

2x0 has been used as a normalised spatial coordinate.
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To compare different values of p for the same optical power in the TEMp0 mode, equation (A.1) should
be multiplied by 1/

√
p! 2p. In this case, the effective Lamb–Dicke factor for the first order sideband in the

regime where w0 � x0
√

n scales approximately as η̃(1) ∝ p
1
4 .
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[12] Ospelkaus C, Langer C E, Amini J M, Brown K R, Leibfried D and Wineland D J 2008 Phys. Rev. Lett. 101 090502
[13] Ospelkaus C, Warring U, Colombe Y, Brown K R, Amini J M, Leibfried D and Wineland D J 2011 Nature 476 181–4
[14] Harty T P, Sepiol M A, Allcock D T C, Ballance C J, Tarlton J E and Lucas D M 2016 Phys. Rev. Lett. 117 140501
[15] Sutherland R T, Srinivas R, Burd S C, Leibfried D, Wilson A C, Wineland D J, Allcock D T C, Slichter D H and Libby S B 2019

New J. Phys. 21 033033
[16] Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R F, Hammerer K and Ospelkaus C 2019 Phys. Rev.

Lett. 123 260503
[17] Srinivas R, Burd S C, Sutherland R T, Wilson A C, Wineland D J, Leibfried D, Allcock D T C and Slichter D H 2019 Phys. Rev.

Lett. 122 163201
[18] Sutherland R T et al 2020 Phys. Rev. A 101 042334
[19] Ozeri R et al 2007 Phys. Rev. A 75 042329
[20] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G and Schmidt-Kaler F 2016 Nat. Commun. 7 12998
[21] Afanasev A, Carlson C E and Mukherjee A 2020 Recoil momentum effects in quantum processes induced by twisted photons

(arXiv:2007.05816)
[22] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl Inst. Stand. Technol. 103 259–328
[23] Kleppner D 2013 Phys. Today 66 25–6
[24] Mølmer K and Sørensen A 1999 Phys. Rev. Lett. 82 1835–8
[25] Cirac J I, Blatt R, Zoller P and Phillips W D 1992 Phys. Rev. A 46 2668–81
[26] James D F V 1998 Appl. Phys. B 66 181–90
[27] Reimann R, Alt W, Macha T, Meschede D, Thau N, Yoon S and Ratschbacher L 2014 New J. Phys. 16 113042
[28] Uruñuela E, Alt W, Keiler E, Meschede D, Pandey D, Pfeifer H and Macha T 2020 Phys. Rev. A 101 023415
[29] Hayes D et al 2010 Phys. Rev. Lett. 104 140501
[30] Inlek I V, Crocker C, Lichtman M, Sosnova K and Monroe C 2017 Phys. Rev. Lett. 118 250502
[31] Cetina M, Egan L N, Noel C A, Goldman M L, Risinger A R, Zhu D, Biswas D and Monroe C 2020 Quantum gates on

individually-addressed atomic qubits subject to noisy transverse motion (arXiv:2007.06768)
[32] Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K and Monroe C 2016 Nature 536 63–6
[33] Sørensen A and Mølmer K 1999 Phys. Rev. Lett. 82 1971–4

7

https://orcid.org/0000-0003-4098-0165
https://orcid.org/0000-0003-4098-0165
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/revmodphys.75.281
https://doi.org/10.1103/revmodphys.75.281
https://doi.org/10.1103/revmodphys.75.281
https://doi.org/10.1103/revmodphys.75.281
https://doi.org/10.1038/s42254-020-0182-8
https://doi.org/10.1038/s42254-020-0182-8
https://doi.org/10.1038/s42254-020-0182-8
https://doi.org/10.1038/s42254-020-0182-8
https://doi.org/10.1103/physrevlett.96.253003
https://doi.org/10.1103/physrevlett.96.253003
https://doi.org/10.1103/physreva.78.063410
https://doi.org/10.1103/physreva.78.063410
https://doi.org/10.1103/physrevlett.100.013001
https://doi.org/10.1103/physrevlett.100.013001
https://doi.org/10.1088/1367-2630/12/5/053026
https://doi.org/10.1088/1367-2630/12/5/053026
https://arxiv.org/abs/1008.0990
https://arxiv.org/abs/1906.02700
https://doi.org/10.1103/physreva.89.062332
https://doi.org/10.1103/physreva.89.062332
https://doi.org/10.1063/1.3665647
https://doi.org/10.1063/1.3665647
https://doi.org/10.1103/physrevlett.101.090502
https://doi.org/10.1103/physrevlett.101.090502
https://doi.org/10.1038/nature10290
https://doi.org/10.1038/nature10290
https://doi.org/10.1038/nature10290
https://doi.org/10.1038/nature10290
https://doi.org/10.1103/physrevlett.117.140501
https://doi.org/10.1103/physrevlett.117.140501
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1103/physrevlett.123.260503
https://doi.org/10.1103/physrevlett.123.260503
https://doi.org/10.1103/physrevlett.122.163201
https://doi.org/10.1103/physrevlett.122.163201
https://doi.org/10.1103/physreva.101.042334
https://doi.org/10.1103/physreva.101.042334
https://doi.org/10.1103/physreva.75.042329
https://doi.org/10.1103/physreva.75.042329
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/ncomms12998
https://arxiv.org/abs/2007.05816
https://doi.org/10.6028/jres.103.019
https://doi.org/10.6028/jres.103.019
https://doi.org/10.6028/jres.103.019
https://doi.org/10.6028/jres.103.019
https://doi.org/10.1063/pt.3.1855
https://doi.org/10.1063/pt.3.1855
https://doi.org/10.1063/pt.3.1855
https://doi.org/10.1063/pt.3.1855
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/physreva.46.2668
https://doi.org/10.1103/physreva.46.2668
https://doi.org/10.1103/physreva.46.2668
https://doi.org/10.1103/physreva.46.2668
https://doi.org/10.1007/s003400050373
https://doi.org/10.1007/s003400050373
https://doi.org/10.1007/s003400050373
https://doi.org/10.1007/s003400050373
https://doi.org/10.1088/1367-2630/16/11/113042
https://doi.org/10.1088/1367-2630/16/11/113042
https://doi.org/10.1103/physreva.101.023415
https://doi.org/10.1103/physreva.101.023415
https://doi.org/10.1103/physrevlett.104.140501
https://doi.org/10.1103/physrevlett.104.140501
https://doi.org/10.1103/physrevlett.118.250502
https://doi.org/10.1103/physrevlett.118.250502
https://arxiv.org/abs/2007.06768
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevLett.82.1971

	Tunable transverse spin–motion coupling for quantum information processing
	1.  Introduction
	2.  Theory
	3.  Experiment
	4.  Discussion
	Acknowledgments
	Appendix A.  Exact expression for transverse Rabi frequency
	ORCID iDs
	References


