Supplemental Materials: Franck-Condon tuning of optical cycling centers by organic functionalization

ELECTRONIC STRUCTURE

Since the accuracy of TD-DFT and DFT for calculating FCFs is not well established, we first benchmarked our methods on small molecules for which experimental measurements (as well as higher levels of theory) are available. We also estimated the magnitude of the additional vibrational branching that could be induced by perturbations between the three excited electronic states.

Benchmarking

Our TD-DFT and DFT methods used for MOC₆H₅ calculations (with Gaussian16 [1]) were benchmarked on M-OH molecules with higher levels of theory, specifically state-averaged CASSCF to optimize geometries, and the MRCI method to calculate electronic excitation energies with Molpro [2]-[3]. We then estimated the error in the FCF double-harmonic approximation (obtained with ezSpectrum [4]) through benchmarked bond length changes compared to experiment. All molecules and molecular orbitals were generated using Multiwfn [5].

We chose MOH molecules based on available experimental data and size: our MOC₆H₅ molecules are too large to perform full CASSCF/MRCI. For MOH, SA-CASSCF geometry optimizations were performed with an active space of 9 electrons and 10 orbitals. The calculations were averaged over the ground and doubly degenerate excited state with a weight of 0.8/0.1/0.1 for the ground state and 0.2/0.4/0.4 for the excited state. The MRCI method, with three reference states, was then used to compute the vertical excitation energies.

In Table S-i we compare the geometries and excitation energies of M-OH and M-OCH₃ systems between DFT, MRCI/CASSCF, and experimental values (where available). Since MOC₆H₅ is similar in structure to M-OH and MOCH₃, and has the same dominant modes involved in FCFs (the M-O stretch), we tentatively use this DFT theory to describe our larger system, and focus on relative trends of the substituent effect on FCF under this theory. We found the PBE0 hybrid functional [6] with the D3 dispersion correction [7] yielded the most reliable DFT and excited state calculations (Table S-ii), which is well known [8–15]. We also probed the effects of basis set size and functional (Table S-ii). Based on overall best performance, DFT geometry optimizations and energy excitations for this work were computed with the PBE0-D3/def2-TZVPPD [16] level of theory on a superfine grid with very tight convergence parameters in Gaussian16. The def2 effective core potential (ECP) was used for the Sr atom.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Method</th>
<th>FCF</th>
<th>X²Σ⁺ M-O (Å)</th>
<th>A²Π M-O (Å)</th>
<th>M-O change (Å)</th>
<th>Eₗₑₓ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaOH</td>
<td>TD-DFT</td>
<td>0.934</td>
<td>1.974</td>
<td>1.950</td>
<td>-0.025</td>
<td>1.973</td>
</tr>
<tr>
<td></td>
<td>CASSCF/MRCI</td>
<td>2.030</td>
<td>1.999</td>
<td></td>
<td>-0.030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>0.9539(21)</td>
<td>1.975</td>
<td>1.953</td>
<td>-0.021</td>
<td>1.979, 1.988</td>
</tr>
<tr>
<td>SrOH</td>
<td>TD-DFT</td>
<td>0.945</td>
<td>2.095</td>
<td>2.073</td>
<td>-0.022</td>
<td>1.737</td>
</tr>
<tr>
<td></td>
<td>CASSCF/MRCI</td>
<td>2.145</td>
<td>2.117</td>
<td></td>
<td>-0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>0.958(3)</td>
<td>2.111</td>
<td>2.091</td>
<td>-0.020</td>
<td>1.803, 1.836</td>
</tr>
<tr>
<td>CaOCH₃</td>
<td>TD-DFT</td>
<td>0.937</td>
<td>1.973</td>
<td>1.951</td>
<td>-0.022</td>
<td>1.901</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>0.925(7)</td>
<td>2.095</td>
<td>2.073</td>
<td>-0.022</td>
<td>1.740</td>
</tr>
</tbody>
</table>

TABLE S-i. Comparison between different computational methods for the M-O (M = Ca, Sr) bond lengths (in Å) of alkaline earth oxide species in the X and A states, as well as the bond length changes from X to A, and the vertical excitation energy (Eₗₑₓ in eV), compared to the band origins or measured FCFs from experiment.

To estimate potential error in FCFs, we briefly discuss the double-harmonic approximation calculated with ezSpectrum. Previous studies estimate that double-harmonic approximation FCFs have 2-3% error with equilibrium bond length values that differed from experimental values by 0.001 – 0.03 Angstroms and computed bond length change...
from \tilde{X} to \tilde{A} agreed with experiment within 0.003-0.006 Angstroms [23]. Similarly, our current method of PBE0-D3 with def2-TZVPPD basis set and ECP gave bond length values for SrOH and CaOH within 0.001 Angstroms of experiment and 0.004 Angstroms for bond length change (Table S-i). Additionally, FCFs using a higher level single-reference method, CCSD/EOM-CCSD, have been previously reported [24] for \tilde{A} experiment and 0.004 Angstroms for bond length change (Table S-i). More detailed investigations into FCF errors, specifically for our MOC$_6$H$_5$ molecules, are discussed in the following section.

Perturbations between excited states

A number of recent, high-precision measurements of vibrational branching ratios for laser-coolable MOR molecules have found that interactions among the electronically excited states can introduce additional off-diagonal decays. This intensity borrowing can arise from a number of interactions, including the Renner-Teller [17], spin-orbit-vibronic [25], Fermi resonance [17], and Jahn-Teller effects [26, 27]. Quite generally, such perturbations are more likely when a molecule has low symmetry, low vibrational frequencies, and a large number of normal modes. Different experimental goals will require different photon budgets; these may range from ~100 photons for high-fidelity imaging, to ~1000 photons for transverse sub-Doppler laser cooling, to $> 10^4$ photons for full 3D cooling and trapping [28]. Because cycling $\sim 10^2-10^3$ photons without significant loss of population requires vibrational closure at the level of 10^{-3}, any mixings above this level must be understood and mitigated for optical detection and transverse cooling applications. Experiments aimed at producing laser-cooled and trapped molecules, by contrast, must control all losses at the $< 10^{-4}$ level.

While a full characterization of these vibronic coupling effects requires an intensive study of the potential energy surfaces for each molecule of interest [27, 29–31], we can gain general insight by using well-developed perturbation methods [17, 32–34]. Consider, for example, the case of SrOC$_6$H$_5$$_2F_9$. Starting from the computed vibrational frequencies and electronic excitation energies, we identified all possible near-degeneracies (defined as levels within 15 cm$^{-1}$ of one another) among the \tilde{A}, \tilde{B}, and \tilde{C} states. Nearly two dozen near-degeneracies were found. Using the linear vibronic coupling matrix elements inferred from or calculated by previous works [26, 27], we find that both the $\tilde{B}(v = 0)$ state is perturbed by the vibrationally excited levels of \tilde{A} so as to exhibit $\gtrsim 1%$ of emission into excited bending modes in \tilde{X}. A similar situation is found for \tilde{C}, although in this case perturbations from excited vibrations of both \tilde{A} and \tilde{B} contribute to the intensity borrowing effect. Because these effects are larger than the decays expected based on calculations for which the (unperturbed) vibrational modes are taken as eigenstates, the utility of the \tilde{B} or \tilde{C} states for optical cycling will require careful experimental study of vibrational loss channels are opened up by vibronic interaction.

The situation for the $\tilde{A}(v = 0)$ state is different because there are no near-degenerate electronic states below it, and therefore no accidental near degeneracies. However, previously, second-order effects operating within the \tilde{A} manifold were found to induce losses to then-unexpected vibrational bending modes [17, 25–27, 35]. Based on the previous measurements of these effects, and scaling for the energy splittings in the molecules considered in this paper, we predict such loss channels to be active only at a level smaller than 10^{-3}. Such a value is sufficiently low that it will not impact the efficiency of photon cycling considered in the main text. In order to extend photon cycling to $\gg 100$ photons, it will be important to reconsider these small couplings. Based on this analysis, the $\tilde{A}(v = 0)$ states of the

TABLE S-ii. Comparison between different basis sets and TD-DFT functionals for calculating the Sr-O bond lengths (in Å) of alkaline earth oxide species in the $X^2\Sigma^+$ and $A^2\Pi$ states, as well as the bond length changes from $X^2\Sigma^+$ to $A^2\Pi$, and the vertical excitation energy (E_{ex} in eV). Results are compared to band origins from experiment.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Basis Set</th>
<th>$X^2\Sigma^+$ Sr-O (Å)</th>
<th>$A^2\Pi$ Sr-O (Å)</th>
<th>Sr-O change (Å)</th>
<th>E_{ex} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP-D3</td>
<td>def2-TZVPPD</td>
<td>2.115</td>
<td>2.096</td>
<td>-0.019</td>
<td>1.896</td>
</tr>
<tr>
<td>m062x</td>
<td>def2-TZVPPD</td>
<td>2.108</td>
<td>2.102</td>
<td>-0.006</td>
<td>2.228</td>
</tr>
<tr>
<td>ωB97XD</td>
<td>def2-TZVPPD</td>
<td>2.113</td>
<td>2.087</td>
<td>-0.026</td>
<td>1.668</td>
</tr>
<tr>
<td>PBE0-D3</td>
<td>def2-TZVPPD</td>
<td>2.095</td>
<td>2.073</td>
<td>-0.022</td>
<td>1.737</td>
</tr>
<tr>
<td>PBE0-D3</td>
<td>def2-SVPD/def2-TZVPPD</td>
<td>2.138</td>
<td>2.121</td>
<td>-0.017</td>
<td>1.750</td>
</tr>
<tr>
<td>Experiment [19, 21]</td>
<td></td>
<td>2.111</td>
<td>2.091</td>
<td>-0.020</td>
<td>1.803, 1.836</td>
</tr>
</tbody>
</table>
(possibly substituted) calcium and strontium phenoxides appears to be the best choice for efficient photon cycling in future experiments. Depending on the degree of vibrational closure required, the B and C states could still be used for higher-order vibrational repumping without sacrificing much population.

Dissociative Decay

The lowest energy dissociated state for these molecular derivatives was calculated to lie above the $\tilde{X} \rightarrow \tilde{A}$ electronic transition by 6-7 eV. As such, the optical excitation energy for the first excited state is not enough to dissociate the molecule.

Natural Transition Orbitals

Calculated natural transition orbitals (NTO) are shown in Figure S1 for the first electronic excitation of SrOC$_6$H$_5$ and Figure S2 for the first four electronic excitations of substituted alkaline earth phenoxides. NTOs provide a better description of excited state electron density than molecular orbitals in particle-hole excitations. Transforming molecular orbital electron density to natural transition orbital density involves separate unitary transformations on both occupied and unoccupied orbitals to obtain a localized transition density matrix to describe the electronic transition [36, 37]. Figure S2 shows that substituting 4-NO$_2$ for a hydrogen on SrOC$_6$H$_5$ reorders the excited states to favor mixing electron density on the NO$_2$ and the metal, so the transition is less localized. As such, it produces a poorer FCF ($\tilde{A} \rightarrow \tilde{X}$ $q_{0,0} = 0.8017$) despite electron-withdrawing strength. This is because NO$_2$ promotes delocalization through the π system of its molecular orbitals with the benzene ring.

![Figure S1](image1.png)

Figure S1. Natural transition orbitals for SrOC$_6$H$_5$’s $\tilde{X} \rightarrow \tilde{A}$ electronic transition. Orbitals were generated using an isosurface value of 0.03.

Hammett Parameters

Hammett parameters quantify substituents’ electron-withdrawing strengths at particular sites on the phenyl ring. These parameters are empirically derived constants based on ionizing benzoic acid in water at room temperature. Although Hammett parameters can be generalized to other systems, we use the original σ_m and σ_p definitions which involve ionizing benzoic acid with substituents in meta or para positions, tabulated in Table 1 of Hansch *et al.* [38]. Benzoic acid is similar in structure to our alkaline earth phenoxides, so these Hammett parameters are reliable in predicting electron-withdrawing strengths for this system. Electron-withdrawing groups have positive Hammett parameters, while electron donating groups have negative Hammett parameters (the unsubstituted case, SrOC$_6$H$_5$, has a Hammett parameter of 0). Ref. [38] lists Hammett constants for the substituents we considered, which range from $\sigma_{\text{tot}} = -0.37$ for the electron-donating para-OH substitution to $\sigma_{\text{tot}} = 1.40$ for phenyl decorated with three strongly electron-withdrawing CF$_3$ groups. With multiple substituents, individual Hammett parameters were added to approximate the net effect.
Trends with Hammett total

Figure S3 shows the approximately linear dependence of the bond length change upon de-excitation on the Hammett total of the substituents. The x-intercepts represent the Hammett totals for which the bond length would not change upon excitation (should such a total be achievable in a way that does not violate the stipulations described in the main text).

![Graph showing M-O bond length change vs. Hammett total.](image)

Figure S3. The amount by which the M-O bond length changes upon $\tilde{A} \rightarrow \tilde{X}$ is strongly dependent on the Hammett total of any substituents. Linear fits for the Sr- species (red) and Ca- species (blue) have x-intercepts at $\Sigma \sigma = 3.7$ and 2.5, respectively. Colored bands here and in Fig. 2 of the main text represent 90% confidence intervals for the fits.

The curves fit to the FCF vs. Hammett total calculations in Fig. 2 of the main text are Gaussians centered on the x-intercepts of the fit lines in Fig. S3 (denoted by \bar{x}). The free parameters a and w were fit using

$$q_{0,0}(x) = ae^{-(x-\bar{x})^2/w^2}$$

(S1)
with x the Hammet total. Fitted parameters were $a = 0.998(4)$ and $w = 14.0(5)$ for Sr species and $a = 0.996(2)$ and $w = 12.2(4)$ for Ca species.

[22] Debayan Mitra, Nathaniel B. Vilas, Christian Hallas, Loïc Anderegg, Benjamin L. Augenbraun, Louis Baum, Calder Miller,

[33] Mingguang Li and John A. Coxon, “The CaCCH $\tilde{A}^2\Pi - \tilde{X}^2\Sigma^+$ 5$^2\zeta$ and 5$^0\zeta$ Bands Studied by High Resolution Spectroscopy: The Ca-C-C Bending Vibration and Vibrionic Interaction,” J. Mol. Spec. 183, 250–262 (1997).

[34] P. I. Presunka and J. A. Coxon, “Laser spectroscopy of the $\tilde{A}^2\Pi - \tilde{X}^2\Sigma^+$ transition of SrOH: Deperturbation analysis of K-resonance in the $v_2 = 1$ level of the $\tilde{A}^2\Pi$ state,” J. Chem. Phys. 101, 201–222 (1994).

